“数据资产入表” 大风下,企业应该如何准备?

2024-03-26 20:44

本文主要是介绍“数据资产入表” 大风下,企业应该如何准备?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如何让数据从 “资源” 完成到 “资产” 再到 “资本” 的价值跨越?数据资产入表是关键一步!

2024 年 1 月 1 日,《企业数据资源相关会计处理暂行规定》正式施行,预示数据资产入表已开启数据要素产业化的大时代。

数据资产入表 是指将数据资源以无形资产或存货的方式确认为企业资产负债表中 “资产” 项,在财务报表中体现其价值和贡献。

因此,企业数据资产入表具有重要战略意义,它将全面释放数据资产的价值属性,增厚企业资产,优化利润、负债指标,改善财务报表结构,为企业价值发现提供 “新思路”。

但是,当前数据资产入表实施细则尚不明确,在资产的合规与确权、成本的计量、价值的评估、列报和披露等方面存在诸多实操难点...

目前,数据资源入表仍处于探索阶段,企业应该如何应对?

1

数据孤岛严重,数据类别繁多

OceanMind 海睿思 提供强大的数据集成能力,覆盖全数据类型、全业务场景和全时间周期,包括:

❖ 企业内部业务系统数据,提供主流关系型数据库、大数据仓库、文件系统和接口接入等能力

❖ 线下数据,提供在线填报功能

❖ 外部互联网数据,提供网络数据爬取能力

数据集成 —— 全域数据资产伴随式采集汇聚

2

数据质量低下,存在诸多问题

OceanMind 海睿思 依据 DCMM 数据质量能力域,以 “事前预防、事中控制、事后审计” 为核心,在数据质量需求、数据质量检查、数据质量分析和数据质量提升等方面具备成熟的方法论和丰富的实施经验。

❖ 事前预防:通过优化流程制度,培训提升质量意识,提高企业业务系统的数据质量

❖ 事中控制:在调研阶段,输出的业务蓝图中包括业务流程、数据质量要求和数据责任部门;在实施阶段,数据质量要求落地为数据质量规则和质量检查任务,并且通过质量问题单由数据责任部门进行整改,解决数据质量问题

❖ 事后审计:定期对企业数据质量进行全面 “体检”,找到问题的 “病因”,以实现数据质量的持续提升

数据治理 —— 数据质量稽核及质量评价报告

3

企业数据资产的问题错综复杂

企业目前的资产规模如何、来自哪些业务系统、归属哪个部门负责、有哪些业务系统或者部门在使用,以上问题是大多数企业无法回答的问题,也是资产入表之前必须解决的问题。

OceanMind 海睿思 提供多业务视角的资产管理手段,让企业对资产规模、资产提供情况以及资产使用情况一目了然,帮助企业更好地查找、理解和使用资产。

企业数据资产一目了然

4

企业数据资产在流通过程中出现安全问题

企业在经营过程中存在大量敏感数据,比如:

❖ 客户信息:包括客户的个人身份信息(如姓名、地址、联系方式)、账户信息(如用户名、密码、支付信息)以及其他与客户相关的敏感数据

❖ 雇员信息:包括雇员的个人身份信息(如姓名、地址、联系方式)、雇佣合同、薪酬信息、社会保险号码等

❖ 财务数据:包括企业的财务报表、会计记录、交易数据、银行账户信息、税务信息等

敏感数据一旦泄露,会带来不同程度的后果。

因此,企业数据资产在流通过程中,必须重视数据安全管控,确保资产在对外流通过程中的可管、可控和可追溯。

OceanMind 海睿思 提供分级分类、数据脱敏、数据加密、资产授权和资产申请审批等多手段,为企业资产流通保驾护航。

数据安全管控,便捷与安全兼而有之

基于以上挑战,OceanMind 海睿思数据资产管理平台,为企业提供完善的一站式解决方案:

❖ 大数据基础平台,可以打通企业内部业务系统之间的数据壁垒,汇聚线上线下数据,提升数据质量

❖ 资产管理,可以帮助企业以多业务视角盘点企业资产,让企业资产一目了然

❖ 资产服务,可以盘活企业资产,以 API、订阅和上报等多种方式让资产发挥在企业内外部均发挥业务价值

❖ 资产安全,通过分级分类、数据脱敏和加密等多手段保障,企业资产在流通过程中的安全可控

OceanMind 海睿思数据资产管理平台架构

OceanMind 海睿思数据资产管理平台,可以协助企业迎接数据资产入表,提前布局开展数据治理,实现数据资产的规范化管理,切实管好用好数据资产,为 “数据资产入表” 夯基垒石!

这篇关于“数据资产入表” 大风下,企业应该如何准备?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849792

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒