时序信号高低频分析——经验模态分解EMD

2024-03-26 17:52

本文主要是介绍时序信号高低频分析——经验模态分解EMD,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序信号高低频分析——经验模态分解EMD

介绍

经验模态分解(Empirical Mode Decomposition,EMD)是一种用于时序信号分解的自适应方法,旨在将原始信号分解为多个固有模态函数(Intrinsic Mode Functions,IMF)的线性组合。EMD是一种数据驱动的分解方法,不需要预先定义基函数或滤波器,并且适用于非线性和非平稳信号的分解和分析。

原理

EMD的基本思想是通过挑选信号中的局部极值点(局部最大值和局部最小值)来构造包络线,并利用包络线来提取信号中的各种振动成分。具体步骤如下:

  1. 提取局部极值点:找到信号中的局部最大值和局部最小值点。

  2. 连接局部极值点:连接相邻的局部极值点,得到上包络线和下包络线。

  3. 计算均值包络线:将上包络线和下包络线的均值作为信号的均值包络线。

  4. 计算细化的包络线:用原始信号减去均值包络线得到细化的包络线。

  5. 重复迭代:将细化的包络线作为新的信号进行迭代,直到满足停止条件(如提取的 IMFs 符合某种特定的物理条件)。

  6. 提取IMF:最终得到的信号即为一组固有模态函数(IMFs),它们是信号中包含的各种振动模式。

公式

在EMD的过程中,每次迭代都会得到一组IMFs,这些IMFs满足以下两个条件:

  1. 极值点和零点的个数相同:IMFs 的极值点(局部最大值和局部最小值)和零点(与 x 轴相交的点)的个数相同或最多相差一个。

  2. 对称分布:IMFs 应在零点附近呈现对称分布。

Python实现

为了实现EMD的分解,我们可以使用PyEMD库,它是Python的一个库,提供了实现EMD和Hilbert-Huang变换的功能。

下面是使用PyEMD库绘制IMF图的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMD# 生成示例信号
t = np.linspace(0, 1, 1000)
s = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t) + np.sin(2 * np.pi * 20 * t)# 创建EMD对象
emd = EMD()# 进行EMD分解
IMFs = emd(s)# 绘制IMF图
plt.figure(figsize=(12, 8))
for i, imf in enumerate(IMFs):plt.subplot(len(IMFs), 1, i+1)plt.plot(t, imf, 'r')plt.title(f'IMF {i+1}')
plt.tight_layout()
plt.show()

在这里插入图片描述

以上代码将生成一个示例信号,然后利用PyEMD库进行EMD分解,并绘制每个IMF的图像。每个IMF代表了原始信号中不同的频率成分。

总结

EMD作为一种数据驱动的信号分解方法,具有很好的自适应性和适用性,适用于各种非线性和非平稳信号的分析。通过将原始信号分解为多个IMFs,EMD能够将信号的各种振动模式分离出来,从而更好地理解信号的特性和行为。在实际应用中,EMD常被用于信号处理、振动分析、生物医学工程等领域,为数据分析和特征提取提供了有力的工具。

这篇关于时序信号高低频分析——经验模态分解EMD的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/849359

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

全屋WiFi 7无死角! 华硕 RP-BE58无线信号放大器体验测评

《全屋WiFi7无死角!华硕RP-BE58无线信号放大器体验测评》家里网络总是有很多死角没有网,我决定入手一台支持Mesh组网的WiFi7路由系统以彻底解决网络覆盖问题,最终选择了一款功能非常... 自2023年WiFi 7技术标准(IEEE 802.11be)正式落地以来,这项第七代无线网络技术就以超高速

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o