Keras(七)TF2中基础的数据类型API介绍

2024-03-26 15:48

本文主要是介绍Keras(七)TF2中基础的数据类型API介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文将介绍如下内容:

  • tf.constant
  • tf.strings
  • tf.ragged.constant
  • tf.SparseTensor
  • tf.Variable

一,tf.constant常量

1,定义tf.constant常量
t = tf.constant([[1., 2., 3.], [4., 5., 6.]])
print(t)#----output------------
tf.Tensor(
[[1. 2. 3.][4. 5. 6.]], shape=(2, 3), dtype=float32)
2,根据index索引切片

tf.constant可以使用索引进行切片操作

t = tf.constant([[1., 2., 3.], [4., 5., 6.]])
print(t[..., 1:])
print(t[:, 1])#----output------------
tf.Tensor(
[[2. 3.][5. 6.]], shape=(2, 2), dtype=float32)
tf.Tensor([2. 5.], shape=(2,), dtype=float32)
3,算子操作
t = tf.constant([[1., 2., 3.], [4., 5., 6.]])
print(t+10)
print(tf.square(t))
print(t @ tf.transpose(t))	# 矩阵与其转置相乘#----output------------
tf.Tensor(
[[11. 12. 13.][14. 15. 16.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[ 1.  4.  9.][16. 25. 36.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[14. 32.][32. 77.]], shape=(2, 2), dtype=float32)
4,与numpy之间的转换
print(t.numpy())
print(np.square(t))
np_t = np.array([[1., 2., 3.], [4., 5., 6.]])
print(tf.constant(np_t))#----output------------
[[1. 2. 3.][4. 5. 6.]]
[[ 1.  4.  9.][16. 25. 36.]]
tf.Tensor(
[[1. 2. 3.][4. 5. 6.]], shape=(2, 3), dtype=float64)
5,零维数据的定义和转换
# Scalars
t = tf.constant(2.718)
print(t.numpy())
print(t.shape)#----output------------
2.718
()

二,tf.strings字符串常量

1,纯英文字符的UTF8编码对应码
t = tf.constant("cafe")
print(t)
print(tf.strings.length(t))
print(tf.strings.length(t, unit="UTF8_CHAR"))
print(tf.strings.unicode_decode(t, "UTF8"))#----output------------
tf.Tensor(b'cafe', shape=(), dtype=string)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor([ 99  97 102 101], shape=(4,), dtype=int32)
2,含中文字符的UTF8编码对应码
t = tf.constant(["cafe", "coffee", "咖啡"])
print(tf.strings.length(t))
print(tf.strings.length(t, unit="UTF8_CHAR"))
r = tf.strings.unicode_decode(t, "UTF8")
print(r)#----output------------
tf.Tensor([4 6 6], shape=(3,), dtype=int32)
tf.Tensor([4 6 2], shape=(3,), dtype=int32)
<tf.RaggedTensor [[99, 97, 102, 101], [99, 111, 102, 102, 101, 101], [21654, 21857]]>

三,tf.ragged.constant

在定义TF常量时,如果数据类型不是标准的矩阵,可以使用tf.ragged.constant来处理

1,tf.ragged_tensor的索引切片操作
r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])
print(r)
print(r[1])
print(r[1:2])#------output------
<tf.RaggedTensor [[11, 12], [21, 22, 23], [], [41]]>
tf.Tensor([21 22 23], shape=(3,), dtype=int32)
<tf.RaggedTensor [[21, 22, 23]]>
2,tf.ragged_tensor的行拼接操作
r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])
r2 = tf.ragged.constant([[51, 52], [], [71]])
print(tf.concat([r, r2], axis = 0))#------output------
<tf.RaggedTensor [[11, 12], [21, 22, 23], [], [41], [51, 52], [], [71]]>
3,tf.ragged_tensor的列拼接操作

注意: 对于列拼接,需要行数必须相同,否则会报错!

r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])
r3 = tf.ragged.constant([[13, 14], [15], [], [42, 43]])
print(tf.concat([r, r3], axis = 1))#------output------
<tf.RaggedTensor [[11, 12, 13, 14], [21, 22, 23, 15], [], [41, 42, 43]]>
4,将tf.RaggedTensor 转化为 tf.Tensor(使用0来补空位)

注意: 因为tf.RaggedTensor为不规则矩阵,所以转化时会使用0来补空位,填补在真实值后。

r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])
print(r.to_tensor())#------output------
tf.Tensor(
[[11 12  0][21 22 23][ 0  0  0][41  0  0]], shape=(4, 3), dtype=int32)

四,tf.SparseTensor

tf.ragged.constant中的填充数只能在真实值的后面,可以使用tf.SparseTensor类型解决此问题。

1,tf.SparseTensor的定义
s = tf.SparseTensor(indices = [[0, 1], [1, 0], [2, 3]],values = [1., 2., 3.],dense_shape = [3, 4])
print(s)#------output------
SparseTensor(indices=tf.Tensor(
[[0 1][1 0][2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
2,将tf.SparseTensor转为tf.Tensor密集矩阵
s = tf.SparseTensor(indices = [[0, 1], [1, 0], [2, 3]],values = [1., 2., 3.],dense_shape = [3, 4])
print(tf.sparse.to_dense(s)) # ---output------
tf.Tensor(
[[0. 1. 0. 0.][2. 0. 0. 0.][0. 0. 0. 3.]], shape=(3, 4), dtype=float32)

注意:若indices位置颠倒,tf.SparseTensor无法转为tf.Tensor密集矩阵.可先使用tf.sparse.reorder排序。

s5 = tf.SparseTensor(indices = [[0, 2], [0, 1], [2, 3]],values = [1., 2., 3.],dense_shape = [3, 4])
print(s5)
s6 = tf.sparse.reorder(s5)
print(tf.sparse.to_dense(s6))#-----output----------
SparseTensor(indices=tf.Tensor(
[[0 2][0 1][2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[0. 2. 1. 0.][0. 0. 0. 0.][0. 0. 0. 3.]], shape=(3, 4), dtype=float32)
3,tf.SparseTensor的计算
s = tf.SparseTensor(indices = [[0, 1], [1, 0], [2, 3]],values = [1., 2., 3.],dense_shape = [3, 4])
print(s)
# 将tf.SparseTensor转为tf.Tensor密集矩阵
print(tf.sparse.to_dense(s)) 
# tf.SparseTensor的计算
s2 = s * 2.0
print(s2)# tf.SparseTensor不支持加法计算
try:s3 = s + 1
except TypeError as ex:print(ex)s4 = tf.constant([[10., 20.],[30., 40.],[50., 60.],[70., 80.]])
print(tf.sparse.sparse_dense_matmul(s, s4))#---output----------
SparseTensor(indices=tf.Tensor(
[[0 1][1 0][2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[0. 1. 0. 0.][2. 0. 0. 0.][0. 0. 0. 3.]], shape=(3, 4), dtype=float32)
SparseTensor(indices=tf.Tensor(
[[0 1][1 0][2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([2. 4. 6.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
unsupported operand type(s) for +: 'SparseTensor' and 'int'
tf.Tensor(
[[ 30.  40.][ 20.  40.][210. 240.]], shape=(3, 2), dtype=float32)

五,tf.Variable

1 ,tf.Variable的定义
v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
print(v)			# 打印变量
print(v.value()) 	# 将变量变成tensor
print(v.numpy())	# 打印具体的数值# ---output------
<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, numpy=
array([[1., 2., 3.],[4., 5., 6.]], dtype=float32)>
tf.Tensor(
[[1. 2. 3.][4. 5. 6.]], shape=(2, 3), dtype=float32)
[[1. 2. 3.][4. 5. 6.]]
2,tf.Variable的赋值
# assign value
v.assign(2*v)
print(v.numpy())
v[0, 1].assign(42)
print(v.numpy())
v[1].assign([7., 8., 9.])
print(v.numpy())# ----output-----
[[ 2.  4.  6.][ 8. 10. 12.]]
[[ 2. 42.  6.][ 8. 10. 12.]]
[[ 2. 42.  6.][ 7.  8.  9.]]

注意:变量的赋值只能用assign函数,不能使用=赋值

try:v[1] = [7., 8., 9.]
except TypeError as ex:print(ex)# ----output-----
'ResourceVariable' object does not support item assignment

这篇关于Keras(七)TF2中基础的数据类型API介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849005

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Python用Flask封装API及调用详解

《Python用Flask封装API及调用详解》本文介绍Flask的优势(轻量、灵活、易扩展),对比GET/POST表单/JSON请求方式,涵盖错误处理、开发建议及生产环境部署注意事项... 目录一、Flask的优势一、基础设置二、GET请求方式服务端代码客户端调用三、POST表单方式服务端代码客户端调用四