Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio)

本文主要是介绍Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Python中,多线程、多进程和基于协程的异步I/O是实现并发编程的三种主要方法。每种方法都有其特定的使用场景和优势。理解这些不同方法的基础原理和适用情境对于编写高效、可扩展的Python程序至关重要。

多线程(threading

  • 概念:多线程允许程序在同一时间执行多个任务。每个线程代表一个执行序列,这意味着程序可以在一个核心或多个核心上并行执行多个线程。
  • 适用场景:适用于I/O密集型任务,如文件读写、网络请求等,因为在等待I/O操作完成时,其他线程可以继续执行。
  • 限制:由于Python的全局解释器锁(GIL),在执行CPU密集型任务时,多线程可能不会带来性能上的提升,因为GIL限制了同一时间只有一个线程能执行Python字节码。因此,对于计算密集型任务,多线程在多核处理器上并不总是能有效利用多核的优势。
代码实现

使用threading模块创建并启动线程:

import threading
import timedef thread_function(name):print(f"Thread {name}: starting")time.sleep(2)print(f"Thread {name}: finishing")if __name__ == "__main__":print("Main    : before creating thread")x = threading.Thread(target=thread_function, args=(1,))print("Main    : before running thread")x.start()print("Main    : wait for the thread to finish")# x.join() # Uncomment this to wait for the thread to finishprint("Main    : all done")

多进程(multiprocessing

  • 概念:多进程通过创建多个进程来实现并发,每个进程在其自己的Python解释器中运行,并且拥有独立的内存空间。
  • 适用场景:适合CPU密集型任务。由于每个进程有自己的GIL和内存空间,多进程能够真正并行地在多核CPU上运行,从而充分利用多核处理器的计算能力。
  • 限制:创建进程的开销比创建线程大,进程间通信(IPC)比线程间通信更复杂、成本更高。因此,对于需要频繁通信的任务,多进程可能不如多线程高效。
代码实现

使用multiprocessing模块创建并启动进程:

from multiprocessing import Process
import os
import timedef process_function(name):print(f"Process {name}: starting")time.sleep(2)print(f"Process {name}: finishing")if __name__ == '__main__':print("Main    : before creating process")p = Process(target=process_function, args=(1,))print("Main    : before running process")p.start()print("Main    : wait for the process to finish")# p.join() # Uncomment this to wait for the process to finishprint("Main    : all done")

基于协程的异步I/O(asyncio

  • 概念asyncio是Python用于编写单线程并发代码的库,通过事件循环和协程实现。协程允许任务在等待I/O操作时挂起,让出控制权给事件循环,以执行其他任务。
  • 适用场景:特别适合I/O密集型应用,如大规模网络爬虫、网络服务器等。在这些应用中,程序经常需要等待外部操作,如网络响应或磁盘I/O,asyncio可以在这些I/O等待时间中执行其他任务,从而提高程序的整体效率。
  • 限制:编写异步代码的复杂性高于同步代码,因为你需要管理事件循环,并使用asyncawait关键字正确地编写协程。此外,异步编程模型不适用于CPU密集型任务,因为它们主要通过单线程执行。
代码实现

使用asyncio模块实现异步I/O:

import asyncioasync def async_function(name):print(f"Task {name}: starting")await asyncio.sleep(2)  # 模拟I/O操作print(f"Task {name}: finishing")async def main():print("Main    : before creating task")# 创建并启动任务task1 = asyncio.create_task(async_function(1))task2 = asyncio.create_task(async_function(2))print("Main    : wait for the tasks to finish")await task1await task2print("Main    : all done")# Python 3.7及以上
asyncio.run(main())

注意事项

  • 在多线程和多进程的示例中,join()方法被注释掉了。如果取消注释,主程序将等待线程或进程完成其任务后再继续执行。这对于理解并发执行与程序等待同步完成的区别很有帮助。
  • asyncio的示例中,asyncio.run(main())启动了事件循环,运行了主协程main(),在其中又并发运行了两个异步任务。这演示了异步编程中任务调度和并发执行的基本原理。
  • 这些代码示例旨在展示每种并发模型的基本结构和用法,实际应用中可能需要更复杂的错误处理和性能优化。

总结

选择哪种并发模型取决于你的具体需求:

  • 对于I/O密集型任务,使用多线程或asyncio
  • 对于需要大量计算并希望利用多核CPU的应用,使用多进程。
  • 当需要同时处理大量网络连接时,考虑使用asyncio

正确地结合使用这些模型,可以让你的Python程序在不同的场景下达到最优性能

这篇关于Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848575

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作