Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio)

本文主要是介绍Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Python中,多线程、多进程和基于协程的异步I/O是实现并发编程的三种主要方法。每种方法都有其特定的使用场景和优势。理解这些不同方法的基础原理和适用情境对于编写高效、可扩展的Python程序至关重要。

多线程(threading

  • 概念:多线程允许程序在同一时间执行多个任务。每个线程代表一个执行序列,这意味着程序可以在一个核心或多个核心上并行执行多个线程。
  • 适用场景:适用于I/O密集型任务,如文件读写、网络请求等,因为在等待I/O操作完成时,其他线程可以继续执行。
  • 限制:由于Python的全局解释器锁(GIL),在执行CPU密集型任务时,多线程可能不会带来性能上的提升,因为GIL限制了同一时间只有一个线程能执行Python字节码。因此,对于计算密集型任务,多线程在多核处理器上并不总是能有效利用多核的优势。
代码实现

使用threading模块创建并启动线程:

import threading
import timedef thread_function(name):print(f"Thread {name}: starting")time.sleep(2)print(f"Thread {name}: finishing")if __name__ == "__main__":print("Main    : before creating thread")x = threading.Thread(target=thread_function, args=(1,))print("Main    : before running thread")x.start()print("Main    : wait for the thread to finish")# x.join() # Uncomment this to wait for the thread to finishprint("Main    : all done")

多进程(multiprocessing

  • 概念:多进程通过创建多个进程来实现并发,每个进程在其自己的Python解释器中运行,并且拥有独立的内存空间。
  • 适用场景:适合CPU密集型任务。由于每个进程有自己的GIL和内存空间,多进程能够真正并行地在多核CPU上运行,从而充分利用多核处理器的计算能力。
  • 限制:创建进程的开销比创建线程大,进程间通信(IPC)比线程间通信更复杂、成本更高。因此,对于需要频繁通信的任务,多进程可能不如多线程高效。
代码实现

使用multiprocessing模块创建并启动进程:

from multiprocessing import Process
import os
import timedef process_function(name):print(f"Process {name}: starting")time.sleep(2)print(f"Process {name}: finishing")if __name__ == '__main__':print("Main    : before creating process")p = Process(target=process_function, args=(1,))print("Main    : before running process")p.start()print("Main    : wait for the process to finish")# p.join() # Uncomment this to wait for the process to finishprint("Main    : all done")

基于协程的异步I/O(asyncio

  • 概念asyncio是Python用于编写单线程并发代码的库,通过事件循环和协程实现。协程允许任务在等待I/O操作时挂起,让出控制权给事件循环,以执行其他任务。
  • 适用场景:特别适合I/O密集型应用,如大规模网络爬虫、网络服务器等。在这些应用中,程序经常需要等待外部操作,如网络响应或磁盘I/O,asyncio可以在这些I/O等待时间中执行其他任务,从而提高程序的整体效率。
  • 限制:编写异步代码的复杂性高于同步代码,因为你需要管理事件循环,并使用asyncawait关键字正确地编写协程。此外,异步编程模型不适用于CPU密集型任务,因为它们主要通过单线程执行。
代码实现

使用asyncio模块实现异步I/O:

import asyncioasync def async_function(name):print(f"Task {name}: starting")await asyncio.sleep(2)  # 模拟I/O操作print(f"Task {name}: finishing")async def main():print("Main    : before creating task")# 创建并启动任务task1 = asyncio.create_task(async_function(1))task2 = asyncio.create_task(async_function(2))print("Main    : wait for the tasks to finish")await task1await task2print("Main    : all done")# Python 3.7及以上
asyncio.run(main())

注意事项

  • 在多线程和多进程的示例中,join()方法被注释掉了。如果取消注释,主程序将等待线程或进程完成其任务后再继续执行。这对于理解并发执行与程序等待同步完成的区别很有帮助。
  • asyncio的示例中,asyncio.run(main())启动了事件循环,运行了主协程main(),在其中又并发运行了两个异步任务。这演示了异步编程中任务调度和并发执行的基本原理。
  • 这些代码示例旨在展示每种并发模型的基本结构和用法,实际应用中可能需要更复杂的错误处理和性能优化。

总结

选择哪种并发模型取决于你的具体需求:

  • 对于I/O密集型任务,使用多线程或asyncio
  • 对于需要大量计算并希望利用多核CPU的应用,使用多进程。
  • 当需要同时处理大量网络连接时,考虑使用asyncio

正确地结合使用这些模型,可以让你的Python程序在不同的场景下达到最优性能

这篇关于Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848575

相关文章

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr