八种Nosql数据的对比

2024-03-26 10:58
文章标签 数据 nosql 对比 八种

本文主要是介绍八种Nosql数据的对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读:Kristóf Kovács 是一位软件架构师和咨询顾问,他最近发布了一片对比各种类型NoSQL数据库的文章。

虽然SQL数据库是非常有用的工具,但经历了15年的一支独秀之后垄断即将被打破。这只是时间问题:被迫使用关系数据库,但最终发现不能适应需求的情况不胜枚举。

但是NoSQL数据库之间的不同,远超过两 SQL数据库之间的差别。这意味着软件架构师更应该在项目开始时就选择好一个适合的NoSQL数据库。针对这种情况,这里对 CassandraMongodbCouchDBRedis、 RiakMembaseNeo4j 和 HBase 进行了比较:

(编注1:NoSQL:是一项全新的数据库革命性运动,NoSQL的拥护者们提倡运用非关系型的数据存储。现今的计算机体系结构在数据存储方面要求具 备庞大的水平扩 展性,而NoSQL致力于改变这一现状。目前Google的 BigTable 和Amazon 的Dynamo使用的就是NoSQL型数据库。 参见NoSQL词条。)

 

1. CouchDB

·        所用语言: Erlang

·        特点:DB一致性,易于使用

·        使用许可: Apache

·        协议: HTTP/REST

·        双向数据复制,

·        持续进行或临时处理,

·        处理时带冲突检查,

·        因此,采用的是master-master复制(见编注2)

·        MVCC – 写操作不阻塞读操作

·        可保存文件之前的版本

·        Crash-only(可靠的)设计

·        需要不时地进行数据压缩

·        视图:嵌入式 映射/减少

·        格式化视图:列表显示

·        支持进行服务器端文档验证

·        支持认证

·        根据变化实时更新

·        支持附件处理

·        因此, CouchApps(独立的 js应用程序)

·        需要jQuery程序库

 

最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。

例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。

(编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,并且可以通过小组中任意成员在组内进行数据更新。)

 

2. Redis

·        所用语言:C/C++

·        特点:运行异常快

·        使用许可: BSD

·        协议:类 Telnet

·        有硬盘存储支持的内存数据库,

·        但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)

·        Master-slave复制(见编注3

·        虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE

·        INCR & co (适合计算极限值或统计数据)

·        支持sets(同时也支持 union/diff/inter)

·        支持列表(同时也支持队列;阻塞式 pop操作)

·        支持哈希表(带有多个域的对象)

·        支持排序 sets(高得分表,适用于范围查询)

·        Redis支持事务

·        支持将数据设置成过期数据(类似快速缓冲区设计)

·        Pub/Sub允许用户实现消息机制

 

最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。

例如:股票价格、数据分析、实时数据搜集、实时通讯。

(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为Master-slave复制,通常应用在需要提供高可用性的服务器集群。)

 

3. MongoDB

·        所用语言:C++

·        特点:保留了SQL一些友好的特性(查询,索引)。

·        使用许可: AGPL(发起者: Apache)

·        协议: Custom, binary( BSON)

·        Master/slave复制(支持自动错误恢复,使用 sets 复制)

·        内建分片机制

·        支持javascript表达式查询

·        可在服务器端执行任意的 javascript函数

·        update-in-place支持比CouchDB更好

·        在数据存储时采用内存到文件映射

·        对性能的关注超过对功能的要求

·        建议最好打开日志功能(参数 –journal

·        在32位操作系统上,数据库大小限制在约2.5Gb

·        空数据库大约占 192Mb

·        采用GridFS存储大数据或元数据(不是真正的文件系统)

 

最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用 CouchDB但因为数据改变太频繁而占满内存的应用程序。

例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。

 

4. Riak

·        所用语言:Erlang和C,以及一些Javascript

·        特点:具备容错能力

·        使用许可: Apache

·        协议: HTTP/REST或者 custom binary

·        可调节的分发及复制(N, R, W)

·        用JavaScript or Erlang在操作前或操作后进行验证和安全支持。

·        使用JavaScript或Erlang进行 Map/reduce

·        连接及连接遍历:可作为图形数据库使用

·        索引:输入元数据进行搜索(1.0版本即将支持)

·        大数据对象支持( Luwak

·        提供“开源”和“企业”两个版本

·        全文本搜索,索引,通过 Riak搜索服务器查询( beta版)

·        支持Masterless多站点复制及商业许可的 SNMP监控

 

最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理 bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。

例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。

5. Membase

·        所用语言: Erlang和C

·        特点:兼容 Memcache,但同时兼具持久化和支持集群

·        使用许可: Apache 2.0

·        协议:分布式缓存及扩展

·        非常快速(200k+/秒),通过键值索引数据

·        可持久化存储到硬盘

·        所有节点都是唯一的( master-master复制)

·        在内存中同样支持类似分布式缓存的缓存单元

·        写数据时通过去除重复数据来减少 IO

·        提供非常好的集群管理 web界面

·        更新软件时软无需停止数据库服务

·        支持连接池和多路复用的连接代理

 

最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序

例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)

 

6. Neo4j

·        所用语言: Java

·        特点:基于关系的图形数据库

·        使用许可: GPL,其中一些特性使用 AGPL/商业许可

·        协议: HTTP/REST(或嵌入在 Java中)

·        可独立使用或嵌入到 Java应用程序

·        图形的节点和边都可以带有元数据

·        很好的自带web管理功能

·        使用多种算法支持路径搜索

·        使用键值和关系进行索引

·        为读操作进行优化

·        支持事务(用 Java api

·        使用Gremlin图形遍历语言

·        支持Groovy脚本

·        支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可

 

最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别

例如:社会关系,公共交通网络,地图及网络拓谱

 

7. Cassandra

·        所用语言: Java

·        特点:对大型表格和 Dynamo支持得最好

·        使用许可: Apache

·        协议: Custom, binary (节约型)

·        可调节的分发及复制(N, R, W)

·        支持以某个范围的键值通过列查询

·        类似大表格的功能:列,某个特性的列集合

·        写操作比读操作更快

·        基于Apache分布式平台尽可能地 Map/reduce

·        我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)

 

最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用 Apache的软件被解雇)

例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析

 

8. HBase

(配合 ghshephard使用)

·        所用语言: Java

·        特点:支持数十亿行X上百万列

·        使用许可: Apache

·        协议:HTTP/REST (支持 Thrift,见编注4

·        在BigTable之后建模

·        采用分布式架构 Map/reduce

·        对实时查询进行优化

·        高性能 Thrift网关

·        通过在server端扫描及过滤实现对查询操作预判

·        支持XML, Protobuf, 和binary的HTTP

·        Cascading, hive, and pig source and sink modules

·        基于Jruby( JIRB)的shell

·        对配置改变和较小的升级都会重新回滚

·        不会出现单点故障

·        堪比MySQL的随机访问性能

 

最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。

例如: Facebook消息数据库(更多通用的用例即将出现)

编注4:Thrift 是一种接口定义语言,为多种其他语言提供定义和创建服务,由Facebook开发并开源

当然,所有的系统都不只具有上面列出的这些特性。这里我仅仅根据自己的观点列出一些我认为的重要特性。与此同时,技术进步是飞速的,所以上述的内容肯定需要不断更新。我会尽我所能地更新这个列表。

 

这篇关于八种Nosql数据的对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848275

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数