ElasticSearch搜索进阶之路之高维数据的BKD树结构

2024-03-26 07:20

本文主要是介绍ElasticSearch搜索进阶之路之高维数据的BKD树结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ElasticSearch中高维数据的BKD树结构

请添加图片描述

KD树与BKD树简介

BKD树,全称为b-树形kd树(bushy kd-trees),是一种用于高维数据搜索的数据结构。它是基于kd树(k-dimensional tree)的改进版本。

KD树结构:

kd树是一种二叉树结构,将数据按特征空间划分区域,支持快速最近邻搜索。每个节点代表一个k维点,通过特征轴划分形成二叉树。搜索最近邻时,比较目标点与节点的特征值,沿树找到最近邻居节点。

不过,当数据进入高维度空间时,kd树的性能就会遭遇滑铁卢。这是因为在高维空间中,数据点之间的距离相差无几,这使得kd树难以进行有效的划分,进而导致搜索效率极度下降。为了破解这个难题,BKD树应运而生。

BKD树结构:

BKD树是一种在kd树基础上进行改进的数据结构。它通过对数据按照特征空间进行划分,将数据分别放置在不同的区域中。并且,BKD树为每个区域维护了一个有序的列表。 在搜索过程中,BKD树能够利用这些有序列表快速定位目标数据所在的区域。这大大提高了搜索的速度,使它成为一个非常高效的数据结构。

BKD树的查询速度为什么这么快?

BKD树之所以迅速,是因为它具备了平衡性、数据局部性、剪枝策略和适应高维数据的特性。这些特性共同作用,使BKD树在搜索和查询方面表现出色。

  1. 平衡性:BKD树通过在每个节点中选择中位数来划分数据,从而保持树的平衡。这意味着树的高度相对较小,查询时需要遍历的节点数量较少,从而加快了查询速度。

  2. 数据局部性:BKD树在构建过程中,将相似的数据项聚集在一起。这种数据的局部性使得在搜索时,只需访问少量的节点,减少了磁盘或内存的访问次数,提高了搜索效率。

  3. 剪枝策略:BKD树在搜索过程中采用了一些剪枝策略,即通过比较查询点与节点的边界距离,排除一些不可能包含查询点的节点,从而减少了搜索的空间。这种剪枝策略有效降低了搜索的复杂度,提高了查询速度。

  4. 适应高维数据:BKD树适用于高维数据,而高维数据往往具有一定的分布特点,如聚类和局部密度变化等。BKD树能够充分利用这些分布特点,将相似的数据项聚集在一起,从而提高了搜索的效率。

ElasticSearch 如何利用BKD树对高维数据进行索引?

通过采用BKD树作为索引结构,ElasticSearch可以在高维空间中进行快速、准确的最近邻搜索,提高搜索效率和精度。

地理空间类型数据为例: 假设我们有一个包含地理空间类型数据的索引,其中每个文档都包含一个地理坐标字段。我们可以使用BKD树来对这些地理坐标进行索引和搜索。

首先,我们需要在索引中创建一个地理坐标字段的映射。例如,我们可以将该字段定义为geo_point类型:

PUT /my_index
{"mappings": {"properties": {"location": {"type": "geo_point"}}}
}

接下来,我们可以将地理坐标数据添加到索引中的文档中:

PUT /my_index/_doc/1
{"location": {"lat": 40.7128,"lon": -74.0060}
}PUT /my_index/_doc/2
{"location": {"lat": 34.0522,"lon": -118.2437}
}PUT /my_index/_doc/3
{"location": {"lat": 51.5074,"lon": -0.1278}
}

现在,我们可以使用BKD树来搜索地理空间类型数据。

例如,我们可以搜索距离某个特定坐标一定距离范围内的文档:

GET /my_index/_search
{"query": {"bool": {"filter": {"geo_distance": {"distance": "100km","location": {"lat": 40,"lon": -70}}}}}
}

上述搜索将返回距离坐标(40, -70) 100公里范围内的文档。

通过使用BKD树索引和搜索地理空间类型数据,Elasticsearch可以高效地处理高维数据,并提供准确的搜索结果。这对于许多应用程序,如地理位置服务和地理空间分析,非常有用。

python实现BKD树算法原理

目标:在点集中找到与目标点一定距离内的所有点

首先,构建树节点:
请添加图片描述
其次,开始为数据构建BKD树:
请添加图片描述
最后,在BKD中进行范围搜索:
在这里插入图片描述

最终,在points中找到与target在一定距离内的点:
在这里插入图片描述

总结

由于BKD树具有很好的高维数据的搜索功能,在ElasticSearch中被用于数字/地理位置等数据类型的索引结构。

赶快来和我一起从零开始学习ElasticSearch搜索和AI人工智能算法,探索更多有趣又实用的技术。

这篇关于ElasticSearch搜索进阶之路之高维数据的BKD树结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/847695

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I