PSO-CNN-BiLSTM多输入回归预测|粒子群优化算法-卷积-双向长短期神经网络回归预测|Matlab

本文主要是介绍PSO-CNN-BiLSTM多输入回归预测|粒子群优化算法-卷积-双向长短期神经网络回归预测|Matlab,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

 二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab平台编译,将PSO(粒子群算法)与CNN-BiLSTM(卷积-双向长短期记忆神经网络)结合,进行多输入数据回归预测

  • 输入训练的数据包含7个特征1个响应值,即通过7个输入值预测1个输出值(多变量回归预测,特征个数可自行指定)

  • 归一化训练数据,提升网络泛化性

  • 通过PSO算法优化CNN-BiLSTM网络的学习率、卷积核个数、神经元个数参数,记录下最优的网络参数

  • 训练LSTM网络进行回归预测,实现更加精准的预测

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

 二、实际运行效果:

三、算法介绍:

粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,其灵感源自对鸟群觅食行为的研究。在PSO中,问题的解被表示为粒子群中的个体,这些个体在解空间中移动,并根据其自身经验和群体经验进行调整,以找到最优解。PSO的工作原理如下:

  1. 初始化:随机生成一群粒子,每个粒子代表了问题的一个解,并赋予每个粒子一个随机的速度和位置。

  2. 评估:根据问题的目标函数,计算每个粒子的适应度(fitness),即目标函数的值。

  3. 更新个体最优位置:对于每个粒子,根据其当前位置和历史最优位置之间的比较,更新其个体最优位置。

  4. 更新群体最优位置:根据所有粒子的个体最优位置,确定群体的全局最优位置。

  5. 更新速度和位置:根据粒子的速度和位置,以及个体和群体最优位置的差异,调整粒子的速度和位置。

  6. 迭代:重复步骤2至步骤5,直到达到停止条件(如达到最大迭代次数或达到满意的解)。

CNN-BiLSTM网络结合了卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM),这种网络结构充分利用了CNN在提取局部特征方面的优势,以及BiLSTM在建模长期依赖关系方面的优势,从而能够有效地捕捉输入序列中的空间和时间信息。具体而言,CNN-BiLSTM网络通常由以下几个部分组成:

  1. 卷积层(CNN):用于提取输入序列的局部特征。CNN通过滑动窗口在输入序列上进行卷积操作,并通过池化层降低特征维度,从而得到序列的局部特征表示。

  2. 双向长短期记忆网络(BiLSTM):用于建模序列数据中的长期依赖关系。BiLSTM由两个方向的LSTM组成,分别从序列的两个方向(前向和后向)对输入序列进行处理,然后将它们的输出进行合并,以获得更全面的序列表示。

  3. 全连接层:将CNN和BiLSTM的输出连接起来,并通过全连接层进行特征融合和分类。

四、完整程序下载:

这篇关于PSO-CNN-BiLSTM多输入回归预测|粒子群优化算法-卷积-双向长短期神经网络回归预测|Matlab的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845174

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、