TensorFlow:将自己训练好的模型迁移到电脑摄像头和外置海康摄像头上,并在视频中实时检测

本文主要是介绍TensorFlow:将自己训练好的模型迁移到电脑摄像头和外置海康摄像头上,并在视频中实时检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有了训练好的模型之后,可以将模型迁移到电脑或者手机上

电脑:

# -*- coding: utf-8 -*-
"""@author: Terry n
"""
# Imports
import numpy as np
import os
import sys
import tensorflow as tf
import cv2# if tf.__version__ < '1.4.0':
#     raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')os.chdir('D:\\object_detection_api\\models-master\\research\\object_detection')# Env setup
# This is needed to display the images.
# %matplotlib inline# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")# Object detection imports
from utils import label_map_utilfrom utils import visualization_utils as vis_util# Model preparation
# What model to download.
#MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'  # [30,21]  best
# MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17'            #[42,24]
# MODEL_NAME = 'faster_rcnn_inception_v2_coco_2017_11_08'         #[58,28]
# MODEL_NAME = 'faster_rcnn_resnet50_coco_2017_11_08'     #[89,30]
# MODEL_NAME = 'faster_rcnn_resnet50_lowproposals_coco_2017_11_08'   #[64, ]
# MODEL_NAME = 'rfcn_resnet101_coco_2017_11_08'    #[106,32]
# MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28'
# MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09'
MODEL_NAME = 'fod_detection'# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'# List of the strings that is used to add correct label for each box.
#PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
PATH_TO_LABELS = os.path.join('data', 'fod.pbtxt')#NUM_CLASSES = 90
NUM_CLASSES = 1
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():od_graph_def = tf.GraphDef()with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:serialized_graph = fid.read()od_graph_def.ParseFromString(serialized_graph)tf.import_graph_def(od_graph_def, name='')# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,use_display_name=True)
category_index = label_map_util.create_category_index(categories)# Helper code
def load_image_into_numpy_array(image):(im_width, im_height) = image.sizereturn np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)# Size, in inches, of the output images.
# IMAGE_SIZE = (12, 8)with detection_graph.as_default():with tf.Session(graph=detection_graph) as sess:# Definite input and output Tensors for detection_graphimage_tensor = detection_graph.get_tensor_by_name('image_tensor:0')# Each box represents a part of the image where a particular object was detected.detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')# Each score represent how level of confidence for each of the objects.# Score is shown on the result image, together with the class label.detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')num_detections = detection_graph.get_tensor_by_name('num_detections:0')# the video to be detected, eg, "test.mp4" herevidcap = cv2.VideoCapture(0)# Default resolutions of the frame are obtained.The default resolutions are system dependent.# We convert the resolutions from float to integer.frame_width = int(vidcap.get(3))frame_height = int(vidcap.get(4))while (True):ret, image = vidcap.read()if ret == True:# image_np = load_image_into_numpy_array(image)image_np = image# Expand dimensions since the model expects images to have shape: [1, None, None, 3]image_np_expanded = np.expand_dims(image_np, axis=0)# Actual detection.(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],feed_dict={image_tensor: image_np_expanded})# Visualization of the results of a detection.vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),category_index,use_normalized_coordinates=True,line_thickness=8)print(scores)cv2.imshow("capture",image_np)if cv2.waitKey(1) & 0xFF == ord('q'):ret = False# Break the loopelse:break
vidcap.release()
cv2.destroyAllWindows()

注意:1,第十八行定位到你的object_detection文件夹下。

2,43行,47行定位到模型位置。50,51行相继修改。54行num_classes为1

3,注意,将此model_video的python文件定位到object_detection下,再在anaconda下运行。

海康摄像头:

model_video.py

# -*- coding: utf-8 -*-
"""@author: Terry n
"""
# Imports
import numpy as np
import os
import sys
import tensorflow as tf
import cv2# if tf.__version__ < '1.4.0':
#     raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')os.chdir('D:\\object_detection_api\\models-master\\research\\object_detection')# Env setup
# This is needed to display the images.
# %matplotlib inline# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")# Object detection imports
from utils import label_map_utilfrom utils import visualization_utils as vis_util# Model preparation
# What model to download.
#MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'  # [30,21]  best
# MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17'            #[42,24]
# MODEL_NAME = 'faster_rcnn_inception_v2_coco_2017_11_08'         #[58,28]
# MODEL_NAME = 'faster_rcnn_resnet50_coco_2017_11_08'     #[89,30]
# MODEL_NAME = 'faster_rcnn_resnet50_lowproposals_coco_2017_11_08'   #[64, ]
# MODEL_NAME = 'rfcn_resnet101_coco_2017_11_08'    #[106,32]
# MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28'
# MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09'
# MODEL_NAME = 'fod_detection'
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'# List of the strings that is used to add correct label for each box.
# PATH_TO_LABELS = os.path.join('data', 'fod.pbtxt')
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')NUM_CLASSES = 90
# NUM_CLASSES = 1
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():od_graph_def = tf.GraphDef()with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:serialized_graph = fid.read()od_graph_def.ParseFromString(serialized_graph)tf.import_graph_def(od_graph_def, name='')# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,use_display_name=True)
category_index = label_map_util.create_category_index(categories)# Helper code
def load_image_into_numpy_array(image):(im_width, im_height) = image.sizereturn np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)# Size, in inches, of the output images.
# IMAGE_SIZE = (12, 8)with detection_graph.as_default():with tf.Session(graph=detection_graph) as sess:# Definite input and output Tensors for detection_graphimage_tensor = detection_graph.get_tensor_by_name('image_tensor:0')# Each box represents a part of the image where a particular object was detected.detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')# Each score represent how level of confidence for each of the objects.# Score is shown on the result image, together with the class label.detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')num_detections = detection_graph.get_tensor_by_name('num_detections:0')# the video to be detected, eg, "test.mp4" hereurl = 'rtsp://admin:ha515515@192.168.1.64:554/11'# vidcap = cv2.VideoCapture(0)# Default resolutions of the frame are obtained.The default resolutions are system dependent.# We convert the resolutions from float to integer.while (True):vidcap = cv2.VideoCapture(url)ret, image = vidcap.read()frame_width = int(vidcap.get(3))frame_height = int(vidcap.get(4))if ret == True:# image_np = load_image_into_numpy_array(image)image_np = image# Expand dimensions since the model expects images to have shape: [1, None, None, 3]image_np_expanded = np.expand_dims(image_np, axis=0)# Actual detection.(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],feed_dict={image_tensor: image_np_expanded})# Visualization of the results of a detection.vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),category_index,use_normalized_coordinates=True,line_thickness=8)print(scores)cv2.imshow("capture",image_np)if cv2.waitKey(20) & 0xFF == ord('q'):ret = False# Break the loopelse:break
vidcap.release()
cv2.destroyAllWindows()

3,在视频中实时检测

video_detection.py

# By Terry_n
# https://space.bilibili.com/275177832
# 可以放在任何文件夹下运行(前提正确配置API[环境变量])
# 输出视频没有声音,pr可解决一切import numpy as np
import os
import sys
import tensorflow as tf
import cv2
import timefrom object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_utilstart = time.time()
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
cv2.setUseOptimized(True)  # 加速cv# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")# 可能要改的内容
######################################################
PATH_TO_CKPT = 'D:\\object_detection_api\\models-master\\research\\object_detection\\fod_detection\\fod_frozen_inference_graph.pb'  # 模型及标签地址PATH_TO_LABELS = 'D:\\object_detection_api\\models-master\\research\\object_detection\\data\\fod.pbtxt'video_PATH = "D:\\object_detection_api\\models-master\\research\\object_detection\\test_video\\cycling.mp4"  # 要检测的视频
out_PATH = "D:\\object_detection_api\\models-master\\research\\object_detection\\output_video\\out_cycling1.mp4"  # 输出地址NUM_CLASSES = 1  # 检测对象个数fourcc = cv2.VideoWriter_fourcc(*'DIVX')  # 编码器类型(可选)
# 编码器: DIVX , XVID , MJPG , X264 , WMV1 , WMV2####################################################### Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():od_graph_def = tf.GraphDef()with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:serialized_graph = fid.read()od_graph_def.ParseFromString(serialized_graph)tf.import_graph_def(od_graph_def, name='')# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,use_display_name=True)
category_index = label_map_util.create_category_index(categories)# 读取视频
video_cap = cv2.VideoCapture(video_PATH)
fps = int(video_cap.get(cv2.CAP_PROP_FPS))  # 帧率width = int(video_cap.get(3))  # 视频长,宽
hight = int(video_cap.get(4))videoWriter = cv2.VideoWriter(out_PATH, fourcc, fps, (width, hight))config = tf.ConfigProto()
config.gpu_options.allow_growth = True  # 减小显存占用
with detection_graph.as_default():with tf.Session(graph=detection_graph, config=config) as sess:# Definite input and output Tensors for detection_graphimage_tensor = detection_graph.get_tensor_by_name('image_tensor:0')# Each box represents a part of the image where a particular object was detected.detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')# Each score represent how level of confidence for each of the objects.# Score is shown on the result image, together with the class label.detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')num_detections = detection_graph.get_tensor_by_name('num_detections:0')num = 0while True:ret, frame = video_cap.read()if ret == False:  # 没检测到就跳出breaknum += 1print(num)  # 输出检测到第几帧了# print(num/fps) # 检测到第几秒了image_np = frameimage_np_expanded = np.expand_dims(image_np, axis=0)image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')boxes = detection_graph.get_tensor_by_name('detection_boxes:0')scores = detection_graph.get_tensor_by_name('detection_scores:0')classes = detection_graph.get_tensor_by_name('detection_classes:0')num_detections = detection_graph.get_tensor_by_name('num_detections:0')# Actual detection.(boxes, scores, classes, num_detections) = sess.run([boxes, scores, classes, num_detections],feed_dict={image_tensor: image_np_expanded})# Visualization of the results of a detection.vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),category_index,use_normalized_coordinates=True,line_thickness=4)# 写视频videoWriter.write(image_np)videoWriter.release()
end = time.time()
print("Execution Time: ", end - start)

 

这篇关于TensorFlow:将自己训练好的模型迁移到电脑摄像头和外置海康摄像头上,并在视频中实时检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844817

相关文章

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解