深究KNIME分析平台上的节点是如何实现推荐原理的

2024-03-25 05:40

本文主要是介绍深究KNIME分析平台上的节点是如何实现推荐原理的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

kinme节点推荐分为社区推荐和服务器推荐,社区推荐即为官方hub,网址https://hub.knime.com/,这个是knime官方存储节点和流程库的,里面也会时常更新。
社区推荐就根据很多使用社区里面节点的频率。服务器推荐是knime-server上存储的节点,我们在KAP分析平台上可以通过knime-serve的api直接连接到服务器上,可以下载服务器上的节点到KAP分析平台上,它就根据用户在服务上使用的节点频率进行节点推荐,但它推荐的节点只是服务器本地resposity里面现有的节点。
Workspace推荐代码
源码有这么一段话
Frequency of how often the nodes were used in the workflows of your workspace.
在工作区的工作流中使用节点的频率。
在这里插入图片描述

这部分代码是获取节点频率的

    return NodeFrequencies.from(Files.newInputStream(WORKSPACE_NODE_TRIPLES_JSON_FILE)).getFrequencies().stream();

worksapce的节点使用率存在了一个名为workspace_recommendations.json的json文件内,每次更新最自动根据KNIME的工作空间(D:\Users\nn\knime-workspace.metadata\knime)路径找到这个文件,并对其更新,在KAP平台上拖动节点,work coach会自动根据最新的json数据来进行节点推荐。

static {PREFS = new ScopedPreferenceStore(InstanceScope.INSTANCE, FrameworkUtil.getBundle(WorkspaceTripleProvider.class).getSymbolicName());WORKSPACE_NODE_TRIPLES_JSON_FILE = Paths.get(KNIMEConstants.getKNIMEHomeDir(), "workspace_recommendations.json");
}

community推荐机制代码
在这里插入图片描述
CommunityTripleProvider.java

//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by Fernflower decompiler)
//package org.knime.workbench.workflowcoach.data;import java.util.Collections;
import java.util.List;
import org.eclipse.core.runtime.preferences.InstanceScope;
import org.eclipse.ui.preferences.ScopedPreferenceStore;
import org.osgi.framework.FrameworkUtil;public class CommunityTripleProvider extends AbstractFileDownloadTripleProvider {private static final ScopedPreferenceStore PREFS;static {PREFS = new ScopedPreferenceStore(InstanceScope.INSTANCE, FrameworkUtil.getBundle(CommunityTripleProvider.class).getSymbolicName());}public CommunityTripleProvider() {super("https://update.knime.com/community_recommendations.json", "community_recommendations.json");}public String getName() {return "Community";}public String getDescription() {return "Frequency of how often the KNIME community used this node.";}public boolean isEnabled() {return PREFS.getBoolean("community_node_triple_provider");}public static final class Factory implements NodeTripleProviderFactory {public Factory() {}public List<NodeTripleProvider> createProviders() {return Collections.singletonList(new CommunityTripleProvider());}public String getPreferencePageID() {return "org.knime.workbench.workflowcoach";}}
}

上面代码社区的推荐代码,可以看到推荐的原理是我们请求一个url,这个url返回一个json数据,这个数据是最近社区一些节点的使用频率

 private static void fillRecommendationsMap(Map<String, List<NodeRecommendationManager.NodeRecommendation>> recommendationMap, NodeTriple nf) {if (!nf.getNode().isPresent() && !nf.getPredecessor().isPresent() && isSourceNode(nf.getSuccessor())) {add(recommendationMap, "<source_nodes>", nf.getSuccessor(), nf.getCount());}if (!nf.getPredecessor().isPresent() && nf.getNode().isPresent() && isSourceNode((NodeInfo)nf.getNode().get())) {add(recommendationMap, "<source_nodes>", (NodeInfo)nf.getNode().get(), nf.getCount());}if (nf.getNode().isPresent()) {add(recommendationMap, getKey((NodeInfo)nf.getNode().get()), nf.getSuccessor(), nf.getCount());}if (nf.getPredecessor().isPresent() && nf.getNode().isPresent()) {add(recommendationMap, getKey((NodeInfo)nf.getPredecessor().get()) + "#" + getKey((NodeInfo)nf.getNode().get()), nf.getSuccessor(), nf.getCount());}}

实验
在这里插入图片描述
这里我新建一个流程,其中Data Generator为社区的节点,其功能为数字生成器,Test是我自己自定义开发的节点,其功能是可以调整数据保留几位小数。后面两个分别是画直线图和散点图。
在这里插入图片描述
在这里插入图片描述

一开始我把在eclipse上自定义开发的节点达成jar包放到knime安装目录下的dropin目录下,这样打开KNIME分析平台就可以看到这个节点了。但是当选中此节点时,此时的workflow coach没有任何推荐的节点,我们执行这个流程并保存。
打开workflow coach配置,点击更新,此时会下载更新一个名为workspace_recommendations.json。里面存储了当前工作区每个节点使用的频率。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可以看到Test节点的前驱为Data Generator,后继为Scatter Plot和Line Plot
此时再查看workflow coach
在这里插入图片描述

可以看出Scatter Plot和Line Plot分别为50%,同理社区的节点推荐元也是如此,不过这个每次更新都能远程下载一个节点使用频率的json文件,还有在工作区上,分析平台时如何监视节点的,并算出频率的,这些问题还有待研究。

这篇关于深究KNIME分析平台上的节点是如何实现推荐原理的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843998

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统