RISC-V处理器:1.取指令 RTL 代码分析

2024-03-24 23:38

本文主要是介绍RISC-V处理器:1.取指令 RTL 代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RISC-V处理器:1.取指令 RTL 代码分析

1. 取指特点

  1. 指令在存储空间中所处的地址,称为它的指令PC(Program Counter)
  2. 取指是指处理器将指令,按照其指令PC,从存储器中读取出来的过程
  3. 处理器从存储器中取出指令的目标是:快速连续不断
  4. 指令分为普通指令非分支跳转指令分支跳转指令
  5. 对于非分支跳转指令,即便是对于地址不对齐的32位指令,也要求能够连续不断的从一个周期内读取出来
  6. 对于分支跳转指令,要能够迅速判断是否需要跳转。若果需要跳转,则从新的指令PC地址处快速取出指令。

2. 快速取指

首先应该保证存储器的读延迟越小越好:

  1. 片外DDR或者Flash存储器可能需要几十个周期的延时
  2. 片上的SRAM也可能需要几个周期的延时

我们采取 ITCM 和 I-Cache 的方法:

  1. ITCM(Instruction Tightly Coupled Memory)
    指令紧耦合存储器,指配置一小段容量很小(即使KB)的存储器(通常为SRAM),用于存储指令,且在物理上,举例处理器核很近,并且专属于处理器核,因此能够取得很小的访问延迟。这种方式只能用来存放容量大小有限的关键程序指令;
  2. I-Cache(Instruction Cache)
    指令缓存,利用软件程序的时间局部性和空间局部性,将容积量巨大的外部指令存储器空间,动态映射到容量有限的指令缓存中,将访问指令存储器的平均延迟降低到最小。但是因为缓存的容量有限,因此访问缓存存在着相当大的不确定性。
TIPS:

大多数的低功耗处理器应用场景都应用实时性较高的场景,因此更加倾向于使用延迟确定的 ITCM 。

3. 处理非对齐指令

非对齐指令:32位指令PC数值无法被4整除
因为作为存储器的 ITCM 或者 I-Cache 往往使用SRAM,而SRAM读端口的宽度是固定的。对于32位SRAM,一个时钟只能读出1个32位的数据,如果一个32位的长指令地址不对齐,则需要两个时钟周期才能取出,之后各取一部分,拼接为真正需要的32位指令。
我们要做的,就是令处理器在一个周期内取出这条指令。以普通指令非对齐和分支跳转指令讨论:

1.普通指令的非对齐

这种指令可以按顺序取指,地址连续增长,利用剩余缓存(Leftover Buffer)保存上次取指令没有用完的比特位,供下次使用。

2. 分支跳转指令的非对齐

如果跳转的目标地址和32位地址边界不对齐,并且需要取出一个32位的指令字,剩余缓存不能使用,因为剩余缓存只能在按顺序取指的情况下,才能够提前预存上次没有用完的指令字。
常见的解决方式是,采用多体化(Bank)的SRAM进行指令存储。其中,奇偶交错的方式最为常见。使用32位宽的SRAM交错进行存储。这样地址不对齐的32位地址,在一个周期内,可以同时访问两块SRAM,取出两个连续的32位指令字。各取一部分拼成真正需要的32位指令字。

4. 处理分支指令

RISC-V架构处理器的分支指令类型:

  1. 无条件跳转/分支指令:
    无条件直接跳转指令:jal(jump and link):

     jal x5,offset // 此为汇编示例,jal使用编码在指令字中的20位立即数(有// 符号)作为offset偏移量。offset x 2,之后与当前指令所在地址// 相加
    

    无条件间接跳转指令: jalr(jump and link-register) :

     jalr x1,x6,offset // 将指令字中的12位立即数作为偏移量(offset),//与另一个寄存器索引的操作数相加,得到最终的跳转目标地址
    
  2. 带条件跳转/分支:
    带条件直接跳转指令
    带条件间接跳转指令

对于分支指令,处理器采用分支预测方式:
是否需要跳转,简称为预测方向。这是对带条件跳转语句来说的。
如果跳转,目标地址是什么?简称为预测地址。

5. 简单的带条件直接跳转指令

beq:两个整数操作数相同则跳转
bne:两个整数不相等则跳转
blt:第一个有符号数小于第二个有符号数,则跳转
blut:第一个无符号数小于第二个无符号数,则跳转
bge:第一个有符号数大于第二个有符号数,则跳转
bgru:第一个无符号数大于第二个无符号数,则跳转

这篇关于RISC-V处理器:1.取指令 RTL 代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843163

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺