DialoGPT遇到的相关问题及解决方案

2024-03-24 22:38

本文主要是介绍DialoGPT遇到的相关问题及解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇博客主要记录了参考DialoGPT官方说明复现所踩的一些坑,持续更新

目录

  • 一、创建anaconda环境LSP
    • 问题1
      • 直接conda env create -f LSP-linux.yml -n LSP导致安装的pytorch和cudatoolkit版本错误
    • 问题2
      • conda activate LSP 没有激活成功导致python版本不一致
  • 二、apex相关
    • 问题3
      • Cuda extensions are being compiled with a version of Cuda that does not...
    • 问题4
      • 报错 ImportError: Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.
    • 问题5
      • **ModuleNotFoundError: No module named 'fused_adam_cuda'**
    • 问题6
      • 提示This fp16_optimizer is designed to only work with apex.contrib.optimizers.*To update, use updated optimizers with AMP.
    • 问题7
      • 报错TypeError: __init__() got an unexpected keyword argument 'max_grad_norm'
    • 其他

一、创建anaconda环境LSP

和官网差不多描述差不多,先git clone项目,然后进入DialoGPT项目目录,按照要求创建anaconda环境LSP,之后激活LSP

git clone https://github.com/microsoft/DialoGPT.git
cd DialoGPT
conda env create -f LSP-linux.yml -n LSP
conda activate LSP

有两个地方会可能对后续造成影响:

问题1

直接conda env create -f LSP-linux.yml -n LSP导致安装的pytorch和cudatoolkit版本错误

他给的环境应该是作者根据自己的GPU版本来下载的相应pytorch、cudatoolkit、nvcc等,可能和我们本地的版本是不一致的,在使用apex时可能会出问题,

所以可以先卸载pytorch,卸载的时候可以pip uninstall pytorch或者conda uninstall pytorch都试试,一般是其中一个可以

然后根据自己机器的情况,参考https://zhuanlan.zhihu.com/p/80386137
找到对应版本,在https://pytorch.org/找到对应命令下载(这里关于如何使用镜像等就不详写了,很多教程)


问题2

conda activate LSP 没有激活成功导致python版本不一致

第一次创建成功后应该使用
conda source activate LSP来激活而不是直接conda activate LSP,否则可能会导致LSP里的python版本为3.6.9,但是实际的python --version得到的还是本地的python版本

激活前还可以使用conda deactivate来退出之前的conda环境


二、apex相关

问题3

Cuda extensions are being compiled with a version of Cuda that does not…

主要参考https://zhuanlan.zhihu.com/p/80386137

前面也提到了,多半是版本不匹配问题


问题4

报错 ImportError: Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.

Traceback (most recent call last):File "LSP_train.py", line 223, in <module>"Please install apex from https://www.github.com/nvidia/apex "
ImportError: Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.

定位到LSP_train.py文件中,主要是这一段
在这里插入图片描述

try:from apex.optimizers import FP16_Optimizerfrom apex.optimizers import FusedAdam
except ImportError:raise ImportError("Please install apex from https://www.github.com/nvidia/apex ""to use distributed and fp16 training.")

主要是在from apex.optimizers import FP16_Optimizer这里
报错:ImportError:"Please install apex from https://www.github.com/nvidia/apex " “to use distributed and fp16 training.”

原因是:最新版的apex中,FP16_Optimizer已经被移到contrib/optimizers下面了
参考linux安装apex时的一些问题

因此,把219,220行由

from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam

修改为:

from apex.fp16_utils import FP16_Optimizer
from apex.optimizers import FusedAdam

注1:

如果把 from apex.optimizers import FusedAdam也同样改成from apex.contrib.optimizers import FusedAdam的话会报新的错:

问题5

ModuleNotFoundError: No module named 'fused_adam_cuda’

参考https://github.com/NVIDIA/apex/issues/633

ModuleNotFoundError: No module named 'fused_adam_cuda'

所以这一行还是保持原状, from apex.optimizers import FusedAdam

注2:
有的教程比如NVIDIA apex安装,是把from apex.optimizers import FP16_Optimizer改为from apex.contrib.optimizers import FP16_Optimizer
亲测可以暂时解决现在报的错,但是后面还是会出现问题6

问题6

提示This fp16_optimizer is designed to only work with apex.contrib.optimizers.*To update, use updated optimizers with AMP.

参见apex readme
FP16_Optimize已经被弃用,import的时候得用from apex.fp16_utils import FP16_Optimizer,而不是from apex.contrib.optimizers import FP16_Optimizer或者from apex.contrib.optimizers import FP16_Optimizer

最后log如下信息就表示FP16_Optimizer和FusedAdam可以正常使用
在这里插入图片描述


问题7

报错TypeError: init() got an unexpected keyword argument ‘max_grad_norm’

Traceback (most recent call last):File "LSP_train.py", line 229, in <module>max_grad_norm=1.0)
TypeError: __init__() got an unexpected keyword argument 'max_grad_norm'

定位到原文在这一段
在这里插入图片描述

参考链接apex readme quick-start
可能是因为apex省略了apex.normalization.FusedLayerNorm,max_grad_norm是一个多余的参数,所以删除,max_grad_norm=1.0试试(后面几处用到了max_grad_norm的也删除)


其他

1、训练时间很长,可能会提示network error:software caused connectiopn abort
在这里插入图片描述
参考解决ssh 连接报错 network error software caused connection abort 自动中断,可能是由于软件原因导致长时间未操作时会自动中断,按照教程设置就好。

2、训练完会有警告

Warning:  FP16_Optimizer is deprecated and dangerous, and will be deleted soon.  If it still works, you're probably getting lucky.  For mixed precision, use the documented API https://nvidia.github.io/apex/amp.html, with opt_level=O1.

大意是说FP16_Optimizer 已弃用且危险,即将被删除。 运气好的话还有效。 对于混合精度,请使用已记录的 API https://nvidia.github.io/apex/amp.html,并带有 opt_level=O1。

所以感觉虽然前面修修补补的也解决了一部分因为DialoGPT太老而产生了一些问题,但是治标不治本,应该还是会试着更新一下代码,用更新后的优化器

3、训练时长

在1块16GB内存的Tesla V100上用原本的reddiet微调,medium版模型大概两个小时跑完

样例设置的一些参数如下:

06/27/2021 11:30:11 - INFO - __main__ -   train batch size = 512, new train batch size (after gradient accumulation) = 64
06/27/2021 11:30:11 - INFO - __main__ -   CUDA available? True
06/27/2021 11:30:11 - INFO - __main__ -   Input Argument Information
06/27/2021 11:30:11 - INFO - __main__ -   model_name_or_path            /data/wd/DialoGPT/models/medium
06/27/2021 11:30:11 - INFO - __main__ -   seed                          42
06/27/2021 11:30:11 - INFO - __main__ -   max_seq_length                128
06/27/2021 11:30:11 - INFO - __main__ -   skip_eval                     False
06/27/2021 11:30:11 - INFO - __main__ -   init_checkpoint               /data/wd/DialoGPT/models/medium/pytorch_model.bin
06/27/2021 11:30:11 - INFO - __main__ -   train_input_file              /data/wd/DialoGPT/data/train.128len.db
06/27/2021 11:30:11 - INFO - __main__ -   eval_input_file               ./data/dummy_data.tsv
06/27/2021 11:30:11 - INFO - __main__ -   continue_from                 0
06/27/2021 11:30:11 - INFO - __main__ -   train_batch_size              64
06/27/2021 11:30:11 - INFO - __main__ -   gradient_accumulation_steps   8
06/27/2021 11:30:11 - INFO - __main__ -   eval_batch_size               64
06/27/2021 11:30:11 - INFO - __main__ -   learning_rate                 1e-05
06/27/2021 11:30:11 - INFO - __main__ -   num_optim_steps               10000
06/27/2021 11:30:11 - INFO - __main__ -   valid_step                    5000
06/27/2021 11:30:11 - INFO - __main__ -   warmup_proportion             0.1
06/27/2021 11:30:11 - INFO - __main__ -   warmup_steps                  4000
06/27/2021 11:30:11 - INFO - __main__ -   normalize_data                True
06/27/2021 11:30:11 - INFO - __main__ -   fp16                          True
06/27/2021 11:30:11 - INFO - __main__ -   lr_schedule                   noam
06/27/2021 11:30:11 - INFO - __main__ -   loss_scale                    0.0
06/27/2021 11:30:11 - INFO - __main__ -   no_token_id                   True
06/27/2021 11:30:11 - INFO - __main__ -   output_dir                    /data/wd/DialoGPT/models/output_model
06/27/2021 11:30:11 - INFO - __main__ -   log_dir                       None
06/27/2021 11:30:11 - INFO - __main__ -   pbar                          True
06/27/2021 11:30:11 - INFO - __main__ -   local_rank                    -1
06/27/2021 11:30:11 - INFO - __main__ -   config                        None
06/27/2021 11:30:11 - INFO - __main__ -   device                        cuda
06/27/2021 11:30:11 - INFO - __main__ -   n_gpu                         1
06/27/2021 11:30:11 - INFO - pytorch_pretrained_bert.tokenization_gpt2 -   loading vocabulary file /data/wd/DialoGPT/models/medium/vocab.json
06/27/2021 11:30:11 - INFO - pytorch_pretrained_bert.tokenization_gpt2 -   loading merges file /data/wd/DialoGPT/models/medium/merges.txt
06/27/2021 11:30:16 - INFO - gpt2_training.train_utils -   loading finetuned model from /data/wd/DialoGPT/models/medium/pytorch_model.bin
06/27/2021 11:30:17 - INFO - gpt2_training.train_utils -   loading transfomer only
06/27/2021 11:30:17 - INFO - gpt2_training.train_utils -   in fp16, model.half() activated
06/27/2021 11:30:20 - INFO - __main__ -   Number of parameter = 354823168
06/27/2021 11:30:20 - INFO - __main__ -   in fp16, using FusedAdam

这篇关于DialoGPT遇到的相关问题及解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843013

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关