c#矩阵求逆

2024-03-24 15:52
文章标签 c# 矩阵 .net netcore 求逆

本文主要是介绍c#矩阵求逆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、矩阵求逆的数学方法

1、伴随矩阵法

2、初等变换法

3、分块矩阵法

4、定义法

二、矩阵求逆C#代码

1、伴随矩阵法求指定3*3阶数矩阵的逆矩阵

(1)伴随矩阵数学方法

(2)代码

(3)计算

2、对任意阶数矩阵求逆

(1)计算方法

(2)代码

(3)计算

(4)计算结果

三、工程下载连接


一、矩阵求逆的数学方法

1、伴随矩阵法

2、初等变换法

3、分块矩阵法

4、定义法

二、矩阵求逆C#代码

1、伴随矩阵法求指定3*3阶数矩阵的逆矩阵

(1)伴随矩阵数学方法

(2)代码

        /// <summary>/// 计算3*3矩阵的逆矩阵/// </summary>/// <param name="input">输入的3*3矩阵</param>/// <returns>计算得到的3*3逆矩阵</returns>public static double[,] inv3(double[,] input){double[,] output = new double[3, 3];//求出伴随矩阵output[0, 0] = input[2, 2] * input[1, 1] - input[2, 1] * input[1, 2];output[0, 1] = input[2, 1] * input[0, 2] - input[0, 1] * input[2, 2];output[0, 2] = input[0, 1] * input[1, 2] - input[0, 2] * input[1, 1];output[1, 0] = input[1, 2] * input[2, 0] - input[2, 2] * input[1, 0];output[1, 1] = input[2, 2] * input[0, 0] - input[0, 2] * input[2, 0];output[1, 2] = input[0, 2] * input[1, 0] - input[0, 0] * input[1, 2];output[2, 0] = input[1, 0] * input[2, 1] - input[2, 0] * input[1, 1];output[2, 1] = input[2, 0] * input[0, 1] - input[0, 0] * input[2, 1];output[2, 2] = input[0, 0] * input[1, 1] - input[1, 0] * input[0, 1];//求出行列式的值double Avalue = input[0, 0] * input[1, 1] * input[2, 2]+ input[0, 1] * input[1, 2] * input[2, 0]+ input[0, 2] * input[1, 0] * input[2, 1]- input[0, 2] * input[1, 1] * input[2, 0]- input[0, 1] * input[1, 0] * input[2, 2]- input[0, 0] * input[1, 2] * input[2, 1];//求出 逆矩阵 for (int i = 0; i < 3; i++){for (int j = 0; j < 3; j++){output[i, j] = output[i, j] / Avalue;}}return output;}

(3)计算

计算代码

            计算3*3矩阵的逆矩阵double[,] input = new double[3, 3] {{ 0,    1,      3 }, { 1,    -1,     0 },{-1,    2,      1}};double[,] out1 = inv3(input);               //方法1——只能求3*3

程序计算结果

对应数学题目

2、对任意阶数矩阵求逆

(1)计算方法

Step1

1)利用初等行变换,那么要将单位矩阵E和n阶矩阵B合并(规定为EandB_normal[ n, 2 * n])

Step2

2)将EandB_normal[ n, 2 * n]转为右半部分为上三角的矩阵

>>>这一步转换比较复杂一点,具体实现就是:

>>>第一层循环,循环变量 j 从第n列开始到第2 * n - 1列结束,目的就是将该列值都转为1,方便后边变为上三角矩阵(需要注意的是,对于第n列,应该考虑把每个值都变为1;但是到第n + 1列时,就不考虑第一个值了;第n + 2列时,不考虑第一个和第二个值;类推);

>>>第二层循环,循环变量 i 从第j - n行开始到第n - 1行结束,目的是对每一行都进行除以EandB_normal[ i, j]值的运算,这样EandB_normal[ i, j]的值就变为了1(需要注意的是,如果EandB_normal[ i, j]的值为0的话,我们考虑将该行与最后一行调换,同时循环变量 i 到第n - 2行结束;如果调换之后,EandB_normal[ i, j]的值仍然为0,那么再将该行与此时的最后一行调换,类推;但是如果一直调换,直到发现始终为0,就说明矩阵B不满秩,退出计算;如果EandB_normal[ i, j]值为负数,该行同时变号);

>>>第三层循环,循环变量 k 从第0列开始到第2 * n - 1列结束,目的是将上一步中循环到的行中的每一个值都除以EandB_normal[ i, j]的值;

>>>循环全部完成之后,矩阵EandB_normal[ n, 2 * n]就变成了右半部分为上三角的矩阵。

Step3

3)接上一步,将该矩阵转为右半部分为单位矩阵的矩阵,此时即为矩阵B的逆矩阵与单位矩阵的合并(规定为B_inverse_andE[ n, 2 * n])

>>>这一步中的循环变量是递减的,具体实现就是:

>>>第一层循环,循环变量 j 从第2 * n - 1列开始到第n列结束,目的是将该列值只保留一个1,其余变为0;

>>>第二层循环,循环变量 i 从第 j - n行开始到第0行结束;

>>>第三层循环,循环变量 k 从第0列开始到第2 * n - 1列结束;拿 j = 2 * n - 1, i = n - 1举例,此时,我们希望第n - 2行的值都加上该行最后一个值的相反数与第n - 1行乘积的对应值,第n - 3行的值都加上该行最后一个值得相反数与第n - 1行乘积的对应值,类推;(需要注意的是,j = 2 * n - 2时,i从第n - 2行开始循环,j = 2 * n - 3时,i从第n - 2行开始循环,类推);

>>>当循环全部完成之后,B_inverse_andE[ n, 2 * n]的右半部分就变为了单位矩阵,左半部分为矩阵B的逆矩阵。

Step4

4)接上一步,将B的逆矩阵取出来(规定为B_inverse[n, n])

(2)代码

/// <summary>/// 任意矩阵求逆。(矩阵是2*2、3*3、4*4、5*5等类型)/// </summary>/// <param name="matrixB">输入的初始矩阵</param>/// <param name="orderNum">矩阵行和列的数</param>/// <returns>计算出的逆矩阵</returns>public static double[,] MatrixInverse(double[,] matrixB, int orderNum){//判断是否满秩bool IsFullRank = true;//n为阶级int n = orderNum;//####赋值####//矩阵B//矩阵B的逆矩阵//单位矩阵E和矩阵B组成的矩阵double[,] B_normal = matrixB;double[,] B_inverse = new double[n, n];double[,] EandB_normal = new double[n, 2 * n];for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){if (i == j)EandB_normal[i, j] = 1;elseEandB_normal[i, j] = 0;}for (int k = n; k < 2 * n; k++){EandB_normal[i, k] = B_normal[i, k - n];}}//####计算####//中间变量数组,用于临时盛装值double[] rowHaveZero = new double[2 * n];//EB矩阵右边的n*n变为上三角矩阵for (int j = n; j < 2 * n; j++){int firstRowN = j - n;int lastRowN = n;int colCount = 2 * n;//把EB中索引为j的列的值化为1for (int i = firstRowN; i < lastRowN; i++){//如果EBijNum值为0,就把0所在的行与此刻最后一行调换位置//并且循环变量i的终止值减去1,直到EBijNum值不为0//最多调换到0所在的行的下一行double EBijNum = EandB_normal[i, j];while (EBijNum == 0 && lastRowN > i + 1){for (int k = 0; k < colCount; k++){rowHaveZero[k] = EandB_normal[i, k];EandB_normal[i, k] = EandB_normal[lastRowN - 1, k];EandB_normal[lastRowN - 1, k] = rowHaveZero[k];}lastRowN -= 1;EBijNum = EandB_normal[i, j];}//如果while循环是由第二个判断跳出//即EBijNum始终为0if (EBijNum == 0){//循环变量i的终止值再减去1,然后跳出循环lastRowN -= 1;break;}//如果为负数,该行变号if (EBijNum < 0){for (int k = 0; k < colCount; k++){EandB_normal[i, k] = (-1) * EandB_normal[i, k];}EBijNum = EandB_normal[i, j];}//将该值变为1,则其余值都除以EBijNumfor (int k = 0; k < colCount; k++){EandB_normal[i, k] = EandB_normal[i, k] / EBijNum;}}//自n列起,每列只保留一个1,呈阶梯状int secondRowN = firstRowN + 1;for (int i = secondRowN; i < lastRowN; i++){for (int k = 0; k < colCount; k++){EandB_normal[i, k] = EandB_normal[i, k]- EandB_normal[firstRowN, k];}}if (lastRowN == firstRowN){//矩阵不满秩IsFullRank = false;break;}}//不满秩,结束运算if (!IsFullRank){double[,] error = new double[n, n];for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){error[i, j] = 0;}}//返还值均为0的矩阵return error;}//将上三角矩阵变为单位矩阵for (int j = 2 * n - 1; j > n; j--){//firstRowN为参考行//secondRowN为运算行int firstRowN = j - n;int secondRowN = firstRowN - 1;int colCount = j + 1;//从最后一列起,每列只保留一个1,其余减为0for (int i = secondRowN; i > -1; i--){double EBijNum = EandB_normal[i, j];for (int k = 0; k < colCount; k++){EandB_normal[i, k] = EandB_normal[i, k]- EandB_normal[firstRowN, k] * EBijNum;}}}//####提取逆矩阵####for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){B_inverse[i, j] = EandB_normal[i, j];}}return B_inverse;}

(3)计算

private void button1_Click(object sender, EventArgs e){计算3*3矩阵的逆矩阵double[,] input = new double[3, 3] {{ 0,    1,      3 }, { 1,    -1,     0 },{-1,    2,      1}};double[,] out1 = inv3(input);               //方法1——只能求3*3double[,] out2 = MatrixInverse(input, 3);   //方法2计算2*2矩阵的逆矩阵double[,] input2 = new double[2, 2] {{ 1, 2 }, { 3, 4 }};double[,] out3 = MatrixInverse(input2, 2); //计算4*4矩阵的逆矩阵double[,] input3 = new double[4, 4] {{ 2, 1,-1,2 }, { 1, 1,1,-1 },{0,0,2,5},{0,0,1,3}};double[,] out4 = MatrixInverse(input3, 4); }

(4)计算结果

以4*4矩阵说明

三、工程下载连接

https://download.csdn.net/download/panjinliang066333/89024543

这篇关于c#矩阵求逆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/842065

相关文章

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

C#如何去掉文件夹或文件名非法字符

《C#如何去掉文件夹或文件名非法字符》:本文主要介绍C#如何去掉文件夹或文件名非法字符的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#去掉文件夹或文件名非法字符net类库提供了非法字符的数组这里还有个小窍门总结C#去掉文件夹或文件名非法字符实现有输入字

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元