关于数据cutoff值确定多种方法(自备)

2024-03-24 13:44

本文主要是介绍关于数据cutoff值确定多种方法(自备),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

方法①survminer 包

方法②ROC曲线绘制的最佳cutoff

其他

方法①survminer 包

使用从“maxstat”R软件包中最大限度选择的等级统计数据,一次确定一个或多个连续变量的最佳分界点。这是一种以结果为导向的方法,提供了与结果(此处为存活率)关系最密切的分界点值。 surv_cutpoint():使用“maxstat”确定每个变量的最佳切割点。

surv _ categorize():根据surv_cutpoint()返回的切割点划分每个变量值。

示例数据分析

##采用包自带的示例数据##
rm(list = ls())
library(survival)
library(survminer)
data(myeloma)
head(myeloma)?surv_cutpoint#查看函数
res.cut <- surv_cutpoint(myeloma, time = "time", #生存时间event = "event", #生存结局variables = c("DEPDC1", "WHSC1", "CRIM1"))
summary(res.cut) #查看数据最佳截断点及统计量
#cutpoint statistic
#DEPDC1    279.8  4.275452
#WHSC1    3205.6  3.361330
#CRIM1      82.3  1.968317#数据分布
plot(res.cut, "DEPDC1", palette = "npg")

# 3. Categorize variables:这里根据cutoff值分为高低分组
res.cat <- surv_categorize(res.cut)
#head(res.cat)
#生存曲线绘制#
fit <- survfit(Surv(time, event) ~DEPDC1, data = res.cat)#拟合生存分析

#绘制生存曲线并显示P值
ggsurvplot(fit,data = res.cat,risk.table = TRUE,pval = T)

感谢木舟笔记:Q&A | R做生存分析如何取最佳cutoff(截断) - 知乎 (zhihu.com)


方法②ROC曲线绘制的最佳cutoff

根据某个数据的检验效能最佳截断值进行分组。

其可以在没有生存数据的时候进行使用,然后分析组间差异

连续性变量的组间差异分析_连续变量和连续变量差异性分析-CSDN博客

ROC及曲线面积汇总学习_roc csdn-CSDN博客

rm(list = ls())
library(pROC)
library(survival)
library(survminer)
#roc截断值确定属于是检验诊断效能
data(myeloma)##这里为了方便展示也是用这个数据进行测试dat <- myeloma[,c(4,8)]#[1] "event"  "DEPDC1"
roc1 <- roc(event ~ DEPDC1, data = dat)
#Setting levels: control = 0, case = 1
#Setting direction: controls < casesattributes(roc1)#查看结果包含内容
roc1$auc#
#Area under the curve: 0.6272
ci.auc(roc1)
#95% CI: 0.5491-0.7053 (DeLong)#求约登指数
roc.result <- data.frame(threshold = roc1$thresholds,sensitivity = roc1$sensitivities,specificity = roc1$specificities)
View(roc.result)
roc.result$youden <- roc.result$sensitivity + roc.result$specificity - 1
head(roc.result)
which.max(roc.result$youden)#找出约登指数最大的一行
roc.result[160,]##查看cutoff值
#threshold sensitivity specificity   youden
#160     281.9   0.5714286   0.7096774 0.281106
##计算出CI值和cutoff点,然后进行标注
table(dat$DEPDC1 > 281.9)#根据截断值划分分组#
myeloma$DEPDC11 <- ifelse(myeloma$DEPDC1 > 281.9,"high", "low")
##绘制生存曲线
fit <- survfit(Surv(time, event) ~DEPDC11, data = myeloma)#拟合生存分析
#绘制生存曲线并显示P值
ggsurvplot(fit,data = myeloma,risk.table = TRUE,pval = T)

结果是一致的。

surv_cutpoint()和ROC曲线都是用于确定最佳截断值的方法,它们之间存在一致性的原因如下:

  1. 目标相同:surv_cutpoint()和ROC曲线都旨在找到一个截断值,使得在该值之上或之下的预测结果能够最好地与实际观测结果相匹配。

  2. 基于模型性能:两种方法都是基于模型的性能来确定最佳截断值。surv_cutpoint()通过评估生存曲线的差异来选择最佳截断值,而ROC曲线通过计算真阳性率和假阳性率来评估分类模型的性能。

  3. 最大化敏感性和特异性:无论是surv_cutpoint()还是ROC曲线,都追求在预测中最大化敏感性和特异性。敏感性指的是正确识别阳性样本的能力,特异性指的是正确识别阴性样本的能力。

  4. 统计学原理:surv_cutpoint()和ROC曲线都基于统计学原理进行计算。surv_cutpoint()使用Kaplan-Meier估计和log-rank检验来评估生存曲线的差异,而ROC曲线使用真阳性率和假阳性率的比值来评估分类模型的性能。

综上所述,surv_cutpoint()确定的最佳截断值与ROC确定的最佳截断值是一致的,因为它们都追求在预测中最大化敏感性和特异性,并基于统计学原理来评估模型的性能。


其他

使用OptimalCutpoints包,cutpointr包

截断值确定全能-cutoff package - 知乎 (zhihu.com)

这篇关于关于数据cutoff值确定多种方法(自备)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841764

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法