王道C语言督学营OJ课后习题(课时14)

2024-03-24 09:28

本文主要是介绍王道C语言督学营OJ课后习题(课时14),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#include <stdio.h>
#include <stdlib.h>typedef char BiElemType;
typedef struct BiTNode{BiElemType c;//c 就是书籍上的 datastruct BiTNode *lchild;struct BiTNode *rchild;
}BiTNode,*BiTree;//tag 结构体是辅助队列使用的
typedef struct tag{BiTree p;//树的某一个结点的地址值struct tag *pnext;
}tag_t,*ptag_t;
//递归实现
//abdhiejcfg   前序遍历 ,前序遍历就是深度优先遍历
void PreOrder(BiTree p)
{if(p!=NULL){putchar(p->c);//等价于 visit 函数PreOrder(p->lchild);PreOrder(p->rchild);}
}
//中序遍历   hdibjeafcg
void InOrder(BiTree p)
{if(p!=NULL){InOrder(p->lchild);putchar(p->c);InOrder(p->rchild);}
}
//hidjebfgca   后序遍历
void PostOrder(BiTree p)
{if(p!=NULL){PostOrder(p->lchild);PostOrder(p->rchild);putchar(p->c);}
}
//《王道 C 督学营》课程
//二叉树的建树(层次建树)
int main()
{BiTree pnew;//用来指向新申请的树结点char c;BiTree tree=NULL;//树根
//phead 就是队列头 ,ptail 就是队列尾ptag_t phead=NULL,ptail=NULL,listpnew=NULL,pcur=NULL;
//输入内容为 abcdefghijwhile(scanf("%c",&c)){if(c=='\n'){break;}pnew=(BiTree)calloc(1,sizeof(BiTNode));//calloc 申请空间并对空间进行初始化 ,赋值为 0pnew->c=c;//数据放进去listpnew=(ptag_t)calloc(1,sizeof(tag_t));//给队列结点申请空间listpnew->p=pnew;if(NULL==tree){tree=pnew;//树的根phead=listpnew;//队列头ptail=listpnew;//队列尾pcur=listpnew;continue;}else{ptail->pnext=listpnew;//新结点放入链表 ,通过尾插法ptail=listpnew;//ptail 指向队列尾部}//pcur 始终指向要插入的结点的位置if(NULL==pcur->p->lchild)//如何把新结点放入树{pcur->p->lchild=pnew;//把新结点放到要插入结点的左边}else if(NULL==pcur->p->rchild){pcur->p->rchild=pnew;//把新结点放到要插入结点的右边pcur=pcur->pnext;//左右都放了结点后 ,pcur 指向队列的下一个}}//printf("--------Preface traversal----------\n");//也叫先序遍历 ,先打印当前结点 ,打印左孩子 ,打印右孩子PreOrder(tree);
//    printf("\n--------Middle order traversal------------\n");//先打印左孩子 ,打印父亲 ,打印右孩子
//    InOrder(tree);
//    printf("\n--------Sequential traversal-----------\n");//先打印左孩子 ,打印右孩子 ,最后打印父亲
//    PostOrder(tree);return 0;
}//#include <iostream>
//using namespace std;
//二叉树节点结构
//struct TreeNode {
//    int val;
//    TreeNode* left;
//    TreeNode* right;
//    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
//};
//前序遍历
//void preorder(TreeNode* root) {
//    if (root == NULL) return;
//
//    cout << root->val << " ";
//    preorder(root->left);
//    preorder(root->right);
//}
//中序遍历
//void inorder(TreeNode* root) {
//    if (root == NULL) return;
//
//    inorder(root->left);
//    cout << root->val << " ";
//    inorder(root->right);
//}
//后序遍历
//void postorder(TreeNode* root) {
//    if (root == NULL) return;
//
//    postorder(root->left);
//    postorder(root->right);
//    cout << root->val << " ";
//}
//
//int main() {
//    // 构建一个简单的二叉树
//    TreeNode* root = new TreeNode(1);
//    root->left = new TreeNode(2);
//    root->right = new TreeNode(3);
//    root->left->left = new TreeNode(4);
//    root->left->right = new TreeNode(5);
//
//    cout << "Preface traversal: ";
//    preorder(root);
//    cout << endl;
//
//    cout << "Middle order traversal: ";
//    inorder(root);
//    cout << endl;
//
//    cout << "Sequential traversal: ";
//    postorder(root);
//    cout << endl;
//
//    return 0;
//}

 

#include <iostream>
#include <queue>
using namespace std;struct Node {char data;Node* left;Node* right;Node(char value) : data(value), left(nullptr), right(nullptr) {}
};Node* buildTree(const string& s) {if (s.empty()) {return nullptr;}Node* root = new Node(s[0]);queue<Node*> q;q.push(root);int i = 1;while (!q.empty() && i < s.length()) {Node* current = q.front();q.pop();if (s[i] != '#') {current->left = new Node(s[i]);q.push(current->left);}i++;if (i < s.length() && s[i] != '#') {current->right = new Node(s[i]);q.push(current->right);}i++;}return root;
}void inorderTraversal(Node* root) {if (root) {inorderTraversal(root->left);cout << root->data;inorderTraversal(root->right);}
}void postorderTraversal(Node* root) {if (root) {postorderTraversal(root->left);postorderTraversal(root->right);cout << root->data;}
}void levelOrderTraversal(Node* root) {if (!root) {return;}queue<Node*> q;q.push(root);while (!q.empty()) {Node* node = q.front();q.pop();cout << node->data;if (node->left) {q.push(node->left);}if (node->right) {q.push(node->right);}}
}int main() {string input = "abcdefghij";Node* root = buildTree(input);// 中序遍历输出inorderTraversal(root);cout << endl;// 后序遍历输出postorderTraversal(root);cout << endl;// 层序遍历输出levelOrderTraversal(root);cout << endl;return 0;
}

 

 

这篇关于王道C语言督学营OJ课后习题(课时14)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841162

相关文章

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示