Day18:LeedCode 513.找树左下角的值 112. 路径总和 106.从中序与后序遍历序列构造二叉树

本文主要是介绍Day18:LeedCode 513.找树左下角的值 112. 路径总和 106.从中序与后序遍历序列构造二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

513. 找树左下角的值

给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。

假设二叉树中至少有一个节点。

示例 1:

 

294aeaf8d4977d45482b128bbf718283.jpeg

输入: root = [2,1,3]
输出: 1

 思路:出该二叉树的 最底层 最左边 节点的值=找出深度最大第一个结点(左结点先遍历)

方法一:递归法

如何找出深度最大的结点:回溯法,设置两个全局遍历maxlen,result记录最长深度,结果

图解:

120171f6743f49e0b5505720e41921fa.png

递归三部曲:

1.确定返回值和参数的类型

用一个全局变量记录最长深度,result记录结果,递归函数无返回值,参数为int len(当前深度),和传入结点TreeNode cur;

2.确认终止条件:

我们采用左优先遍历 ,遇到叶节点则return,如果该叶节点是深度更大的结点,则更新result;

3.单层递归逻辑:

用回溯法计算每个结点的深度

代码参考:

class Solution {int maxlen=-1;int result=0;public int findBottomLeftValue(TreeNode root) {//本题结点个数至少为1个travelsal(root,1);return result;}void travelsal(TreeNode cur,int len){//   if(root==null)return;if(cur.left==null&&cur.right==null){if(len>maxlen){//找到第一个深度更大的结点则更新resultresult=cur.val;maxlen=len;}return;}if(cur.left!=null){travelsal(cur.left,len+1);}//回溯,下一结点深度+1//本节点深度不变if(cur.right!=null){travelsal(cur.right,len+1);}//回溯,下一结点深度+1}
}

方法二:迭代法,层序遍历找到最后一排的第一个结点

层序遍历模板:

Day15:二叉树层序遍历 LeedCode 102.二叉树的层序遍历 199二叉树的右视图 637.二叉树的层平均值 101.对称二叉树 226.翻转二叉树-CSDN博客

代码参考:

class Solution {int result=0;public int findBottomLeftValue(TreeNode root) {Queue<TreeNode> myQ=new LinkedList<>();TreeNode cur=root;myQ.offer(cur);while(!myQ.isEmpty()){int len=myQ.size();for(int i=0;i<len;i++){//每层的第一个元素用来更新resultTreeNode temp=myQ.poll();if(i==0)result=temp.val;if(temp.left!=null){myQ.offer(temp.left);}if(temp.right!=null){myQ.offer(temp.right);}}}return result;}
}

112. 路径总和

给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。

叶子节点 是指没有子节点的节点。

示例 1:

 

6d411da702ef84d2a39823f28cda4f43.jpeg

输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。

78c92f555024492faa375b7a807ec303.png

思路:用回溯法遍历所有路径

递归三部曲:

1.确定返回值和参数类型

返回一个boolean类型,参数为int sums(用targetSum依次减去路径上的值)和TreeNode cur(记录当前遍历到哪个结点)

因为targetSum不是全局变量,我们不能用sums==targetSum来判断是否找到路径,用targetSum依次减去路径上的值,sums==0代表找到

2.确定终止条件

遇到叶子结点判断sums是否等于0

 if(cur.left==null&&cur.right==null&&sums==0){return true;}
 if(cur.left==null&&cur.right==null)return false;

3.确定单层递归逻辑:

找到了就立即返回false,没找到就找其他路径,当所有路径都遍历完时,返回false

 if(cur.left!=null){
            if(travelsal(cur.left,sums-cur.left.val))return true;
        }
if(cur.right!=null){
            if(travelsal(cur.right,sums-cur.right.val))return true;
        }

class Solution {public boolean hasPathSum(TreeNode root, int targetSum) {if(root==null)return false;return travelsal(root,targetSum-root.val);}boolean travelsal(TreeNode cur,int sums){if(cur.left==null&&cur.right==null&&sums==0){return true;}if(cur.left==null&&cur.right==null)return false;if(cur.left!=null){if(travelsal(cur.left,sums-cur.left.val))return true;}if(cur.right!=null){if(travelsal(cur.right,sums-cur.right.val))return true;}//遍历完所有路径均没找到,返回falsereturn false;}
}

方法二:迭代法

用栈来模拟回溯的过程:

1ebd3e6f285e4702bacc6d72124fef9d.png

思路:用一个栈放入所有分支路径,一个栈放入这些路径的总和值

class Solution {public boolean hasPathSum(TreeNode root, int targetSum) {if(root==null)return false;Stack<TreeNode> stack1=new Stack<>();Stack<Integer> stack2=new Stack<>();stack1.push(root);stack2.push(root.val);while(!stack1.empty()){TreeNode cur=stack1.pop();Integer curSum=stack2.pop();//如果该节点为叶节点,且路径值==target 返回true;if(cur.left==null&&cur.right==null&&curSum==targetSum)return true;if(cur.left!=null){stack1.push(cur.left);stack2.push(curSum+cur.left.val);}if(cur.right!=null){stack1.push(cur.right);stack2.push(curSum+cur.right.val);}}return false;}
}

106. 从中序与后序遍历序列构造二叉树

给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。

示例 1:

 

42699c3c8a4d858737d7b228e5185049.jpeg

输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]

4ae7bc1127244856b6fbf1975c737e5f.png

 思路:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

图解:

a2d59669b3f14e60bb2ee4bee3af1c76.png

 

代码:

class Solution {public TreeNode buildTree(int[] inorder, int[] postorder) {if(inorder.length==0)return null;//根据后序遍历找到根节点int rootValue=postorder[postorder.length-1];TreeNode root=new TreeNode(rootValue);//在中序遍历中找到根节点的位置int index=0;for(int i=0;i<inorder.length;i++){if(inorder[i]==rootValue) index=i;}//切割中序数组,中序数组在rootValue左边的值是左子树,在rootValue右边的值是右子树int[] left_inorder=Arrays.copyOfRange(inorder,0,index);int[] right_inorder=Arrays.copyOfRange(inorder,index+1,inorder.length);//切割后序数组int[] left_postorder=Arrays.copyOfRange(postorder,0,index);int[] right_postorder=Arrays.copyOfRange(postorder,index,postorder.length-1);root.left=buildTree(left_inorder,left_postorder);root.right=buildTree(right_inorder,right_postorder);return root;}
}

 注意:Arrays.copyOfRange()主要用于对一个已有的数组进行截取复制,复制出一个左闭右开区间的数组。

相似题目:

105. 从前序与中序遍历序列构造二叉树

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

 

示例 1:

 

042faf54261265f6eea664bcae95c621.jpeg

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]

4ce108db8017420380cf1a05d4ef0e6a.png

代码:

class Solution {public TreeNode buildTree(int[] preorder, int[] inorder) {if(inorder.length==0)return null;//根据先序遍历找到根节点int rootValue=preorder[0];TreeNode root=new TreeNode(rootValue);//在中序遍历中找到根节点的位置int index=0;for(int i=0;i<inorder.length;i++){if(inorder[i]==rootValue) index=i;}//切割中序数组,中序数组在rootValue左边的值是左子树,在rootValue右边的值是右子树int[] left_inorder=Arrays.copyOfRange(inorder,0,index);int[] right_inorder=Arrays.copyOfRange(inorder,index+1,inorder.length);//切割先序序数组int[] left_preorder=Arrays.copyOfRange(preorder,1,1+index);int[] right_preorder=Arrays.copyOfRange(preorder,index+1,preorder.length);root.left=buildTree(left_preorder,left_inorder);root.right=buildTree(right_preorder,right_inorder);return root;}
}

 

 

 

 

 

这篇关于Day18:LeedCode 513.找树左下角的值 112. 路径总和 106.从中序与后序遍历序列构造二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840865

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Java遍历HashMap的6种常见方式

《Java遍历HashMap的6种常见方式》这篇文章主要给大家介绍了关于Java遍历HashMap的6种常见方式,方法包括使用keySet()、entrySet()、forEach()、迭代器以及分别... 目录1,使用 keySet() 遍历键,再通过键获取值2,使用 entrySet() 遍历键值对3,