建立没有数据集96准确性的辣胡椒分类器

2024-03-24 03:20

本文主要是介绍建立没有数据集96准确性的辣胡椒分类器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据科学 , 机器学习 (Data Science, Machine Learning)

In this article, I will create an AI capable of recognizing a spicy pepper from measurements and color. Because you won’t be able to find any dataset on the measurements of spicy peppers online, I will generate it myself using statistics methodologies. In a second article, I may try to apply regression algorithms to estimate the spiciness of your pepper on the Scoville Scale.

在本文中,我将创建一个能够通过测量和颜色识别辣辣椒的AI。 因为您将无法在线上找到任何关于辣辣椒测量的数据集,所以我将使用统计方法自行生成该数据集。 在第二篇文章中,我可能会尝试使用回归算法以Scoville量表估算您的胡椒的辛辣度。

处理: (Process:)

  1. Finding Available Data

    查找可用数据
  2. Making Measurements

    进行测量
  3. Creating the dataset from distributions

    从分布创建数据集
  4. Creating the Model

    创建模型
  5. Performance Evaluation

    绩效评估

1.查找可用数据 (1. Finding available data)

As mentioned before, you will unlikely find a dataset for everything you wish to build. In my case, I wanted to build a spicy pepper classifier, which is a difficult task if you have no data to start with. The only thing I could find on the internet was a comparison table of different spicy peppers (hopefully on the same scale).

如前所述,您不太可能找到要构建的所有内容的数据集。 就我而言,我想构建一个辣味分类器,如果没有任何数据开始,这将是一项艰巨的任务。 我在互联网上唯一能找到的是一张不同麻辣胡椒的比较表(希望是相同的比例)。

Image for post

I will need to transform this data into a digital one. What I can do is take measurements of these images and place them as features in a dataset.

我将需要将此数据转换为数字数据。 我所能做的就是对这些图像进行测量,并将它们作为特征放置在数据集中。

2.进行测量 (2. Making Measurements)

To make measurements I can use pixels. After knowing the rate of conversion of pixels to centimeters I can measure the size of each spicy pepper in pixels and convert it to its real-world scale.

为了进行测量,我可以使用像素。 在了解了像素到厘米的转换率之后,我可以测量每个香辛椒的大小(以像素为单位),并将其转换为现实世界的比例。

Image for post

This is the final table with all measurements (name, height, width, and color) converted into features.

这是最终表,其中所有度量(名称,高度,宽度和颜色)均已转换为特征。

#   measurements
pepper_measurements_px = [
['Anaheim', 262, 63, 'Green'],
['Cubanelle', 222, 70, 'Green'],
['Cayenne', 249, 22, 'Red'],
['Shishito', 140, 21, 'Green'],
['Hungarian Wax', 148, 63, 'Orange'],
['Jimmy Nardello', 190, 23, 'Red'],
['Fresno', 120, 43, 'Red'],
['Jalapeno', 106, 40, 'Dark Green'],
['Aji Amarillo', 92, 13, 'Yellow'],
['Aji Dulce', 81, 30, 'Red'],
['Serrano', 74, 14, 'Dark Green'],
['Padron', 62, 38, 'Dark Green'],
['Scotch Bonnet', 37, 42, 'Yellow'],
['Habanero', 67, 21, 'Orange'],
['Cumari', 18, 11, 'Yellow'],
]

I will now generate a dataset of 100.000 samples for spicy peppers.

现在,我将生成一个100.000个辛辣辣椒样本的数据集。

3.从分布创建数据集 (3. Creating datasets from distributions)

Before starting to create distributions, I will first need to convert the pixels into centimeters. Then for both length and width, I will need two separate normal distributions using this data as mean. For a standard deviation, I will use 10% of the mean (in this way I won’t have to Google the details of every spicy pepper).

在开始创建分布之前,我首先需要将像素转换为厘米。 然后,对于长度和宽度,我将需要使用此数据作为均值的两个单独的正态分布。 对于标准差,我将使用平均值的10%(这样,我就不必在Google上搜索每个辛辣胡椒的详细信息)。

创建功能 (Creating Functions)

I am creating a set of functions that will allow the creation of n datasets, inputting the size. I will use 100,000 samples for spicy pepper.

我正在创建一组函数,将允许创建n个数据集,并输入大小。 我将用100,000个样本制作辣胡椒。

#simulated probability distribution of one stock
from scipy.stats import skewnorm
import matplotlib.pyplot as plt
import pandas as pd
import numpy as npdef create_peppers(sd, mean, alfa, size):
#invertire il segno di alfa
x = skewnorm.rvs(-alfa, size=size)
def calc(k, sd, mean):
return (k*sd)+mean
x = calc(x, sd, mean) #standard distribution#graph the distribution
#pd.DataFrame(x).hist(bins=100)#pick one random number from the distribution
#formally I would use cdf, but I just have to pick randomly from the 1000000 samples
df = [np.random.choice(x) for k in range(size)]
#return the DataFrame
return pd.DataFrame(df)def cm_converter(px_measurements):
pc_cm = 0.05725
for _ in range(len(px_measurements)):
px_measurements[_][1] *= pc_cm
px_measurements[_][2] *= pc_cm
return px_measurements

创建数据集 (Creating the Dataset)

I am now ready to create the datasets. I can specify the use of the 10% of the mean as a standard deviation (I can easily change it from height_sd and widht_sd):

我现在准备创建数据集。 我可以指定使用平均值的10%作为标准偏差(我可以很容易地从height_sd和widht_sd进行更改):

#   create converted list
pepper_measurements_cm = cm_converter(pepper_measurements_px)# create final datasets
heigh_sd = 0.1
width_sd = 0.1df = pd.DataFrame()
for _ in pepper_measurements_cm:
# create height
#SD is 10% of the height
df_height = create_peppers(_[1]*heigh_sd, _[1], 0, 100000)
# create width
#SD is 10% of the width
df_width = create_peppers(_[2]*width_sd, _[2], 0, 100000)
#create DataFrame
df_single = pd.concat([df_height, df_width], axis=1)
df_single.columns = ['height', 'width']
#create name
df_single['name'] = str(_[0])
df_single['color'] = str(_[3])df = pd.concat([df, df_single], axis=0)
df
Image for post
Normal distribution of a single generated feature
单个生成特征的正态分布

This is the final result: combined, the dataset counts 1.5 Million samples:

这是最终结果:合并后,数据集计数了150万个样本:

Image for post
Final Dataset
最终数据集

If we plot height and width in different histograms:

如果我们在不同的直方图中绘制高度和宽度:

Image for post
height and width in separated histograms
分开的直方图中的高度和宽度

4.创建模型 (4. Creating the Model)

The model I will be using is a Naive Bayes Classifier. Rather than many other models, this one is specialized with data that:

我将使用的模型是朴素贝叶斯分类器。 而不是许多其他模型,该模型专用于以下数据:

  • Is independent

    是独立的
  • Follows a normal distribution

    服从正态分布

Because I built my dataset following these presuppositions, this classifier is perfect for what I wish to build.

因为我是按照这些前提建立数据集的,所以该分类器非常适合我要构建的内容。

前处理 (Preprocessing)

The only preprocessing step I will have to make is encoding the color with a one_hot encoding algorithm:

我唯一要做的预处理步骤是使用one_hot编码算法对颜色进行编码:

#backup
X = df.copy()def one_hot(df, partitions):
#togliamo le colonne da X
for col in partitions:
k = df.pop(col)
k = pd.get_dummies(k, prefix=col)
df = pd.concat([df, k] , axis=1)
return dfX = one_hot(X, ['color'])
X

选择功能和标签 (Selecting Features and Labels)

y = X.pop('name')
y
Image for post
Labels
标签
X
Image for post
Features after one_hot encoding
one_hot编码后的功能

分裂 (Splitting)

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

I will now split Features and Labels randomly, a ratio of 80:20 will suffice.

现在,我将随机分割特征和标签,比率为80:20就足够了。

训练模型 (Training the Model)

from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)

The model has been trained:

该模型已经过训练:

GaussianNB(priors=None, var_smoothing=1e-09)

5.绩效评估 (5. Performance Evaluation)

After training the model, I will test it on the part of the dataset which the AI has never seen during training:

训练完模型后,我将在AI在训练过程中从未见过的数据集部分进行测试:

clf.score(X_test, y_test, sample_weight=None)
0.9659133333333333

The model has reached an outstanding 96% accuracy!

该模型达到了出色的96%精度!

翻译自: https://medium.com/towards-artificial-intelligence/building-a-spicy-pepper-classifier-with-no-datasets-96-accuracy-8262d54a8117


http://www.taodudu.cc/news/show-8503898.html

相关文章:

  • Effective Python -- 第 1 章 用 Pythonic 方式来思考(下)
  • 每日10行代码90:编写高质量python代码方法7——用列表推导来取代map和filter
  • Effective Python学习笔记
  • 读书笔记:《Effective Python 编写高质量Python代码的59个有效方法》
  • 大数据导论学习日志
  • 大数据的时代,迈向人类的未来
  • 联想大数据企业级分析平台(LEAP)通过数据中心联盟认证
  • 联想大数据入选工信部国家“大数据优秀产业、服务和应用解决方案”
  • 联想大数据,与吴静钰一起拼搏
  • [bzoj] 牡牛和牝牛 题解
  • acwing数论
  • 长春网站建设公司哪家好?
  • 做网站建设前的准备
  • 做网站建设需要注意的五大事项
  • 做网站建设前需要了解的几个问题
  • 靠谱的建网站公司,才能保证网站的安全
  • 做网站建设推广的团队或公司不挣钱的原因
  • 如何在做网站建设时为优化助力
  • 关于网站建设公司哪家好的一些事
  • 蚂蚁全媒体刘鑫炜解答:你们觉得当下公司做网站建设有必要性吗?
  • Vue2.js工程实践4:Vue相关开源项目库汇总
  • 系统分析---作业6
  • 2029中国电影市场前瞻:大数据审查、区块链宣发、5G一秒同步拷贝
  • 前后端分离nodejs和vue.js电影院在线售票系统
  • Paython实操印章图片 自动抠动
  • vue2 之 实现pdf电子签章
  • 推荐 15 款很棒的文本编辑器
  • css 设置span标签单行文字展示
  • Css实现单行文字水平居中多行文字左对齐
  • AutoLisp 获得选中的单行文字的内容
  • 这篇关于建立没有数据集96准确性的辣胡椒分类器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/840312

    相关文章

    MyBatis-plus处理存储json数据过程

    《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

    GSON框架下将百度天气JSON数据转JavaBean

    《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

    C# LiteDB处理时间序列数据的高性能解决方案

    《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

    Java+AI驱动实现PDF文件数据提取与解析

    《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

    MySQL中查询和展示LONGBLOB类型数据的技巧总结

    《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

    使用SpringBoot+InfluxDB实现高效数据存储与查询

    《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

    Java整合Protocol Buffers实现高效数据序列化实践

    《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

    Python实现数据可视化图表生成(适合新手入门)

    《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

    MySQL数据脱敏的实现方法

    《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

    MySQL中处理数据的并发一致性的实现示例

    《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒