AIGC——ComfyUI使用SDXL双模型的工作流(附件SDXL模型下载)

2024-03-24 02:28

本文主要是介绍AIGC——ComfyUI使用SDXL双模型的工作流(附件SDXL模型下载),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SDXL算法概述

SDXL(Stable Diffusion XL)是Stable Diffusion公司发布的一款图像生成大模型。在以往的模型基础上,SDXL进行了极大的升级,其base模型参数数量达到了35亿,refiner模型参数数量达到了66亿。SDXL与之前的版本最大的不同之处在于它由base基础模型和refiner优化模型两个模型构成,使得用户可以在base模型的基础上再利用优化模型进行绘画,从而更有针对性地优化图像质量。
在这里插入图片描述
在这里,第一个模型被称为基础模型(base model)。而第二个模型则是细化模型,它在基础模型生成的图像基础上进一步细化图像的细节。细化模型与基础模型采用相同的VAE潜在扩散模型,但在训练时仅使用较低的噪声水平。在推断时,仅使用细化模型的图像生成能力。对于一个提示,首先使用基础模型生成潜在表示,然后给这个潜在表示添加一定的噪声(通过扩散过程),并使用细化模型进行去噪。通过这种重新添加和去除噪声的过程,图像的局部细节会有所提升。

级联细化模型实际上相当于一种模型集成策略,这种策略在文本生成图像领域已经得到了应用。例如,NVIDIA在《eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers》中提出了集成不同的扩散模型来提升生成质量。另外,利用潜在扩散的图像生成来提升质量也已经得到了应用,例如Stable Diffusion web UI中的high res fix就是基于图像生成来实现的(结合超分辨率模型)。

细化模型和基础模型在结构上有一定的不同,其UNet结构如下图所示,细化模型采用4个阶段,第一个阶段同样采用没有注意力的DownBlock2D,网络的特征维度为384,而基础模型为320。此外,细化模型的注意力模块中的transformer block数量均设置为4。细化模型的参数量为2.3B,略小于基础模型。

另外,细化模型的文本编码器仅使用了OpenCLIP ViT-bigG,同样提取倒数第二层特征和池化文本嵌入。与基础模型相同,细化模型也使用了大小和裁剪条件,此外还增加了图像的艺术评分(aesthetic-score)作为条件,处理方式与之前相同。细化模型可能没有采用多尺度微调,因此没有引入目标尺寸作为条件(细化模型仅用于图像生成,可以直接适应各种尺度)。

SDXL的优缺点

优点

  1. 更大的体积和分辨率:SDXL的容量相比之前版本大幅增加,支持基于1024*1024的高清图片进行训练,这使得生成的图像更加清晰、细节更加丰富。
  2. 更智能的文字和语言识别:SDXL可以直接生成带有文字的图片,用户可以使用特定的句式来生成带有文字的图片。

1 girl is wearing a helmetthe helmet with the words"SDXL" written on it,
在这里插入图片描述

  1. 同时,SDXL对自然语言的识别能力也得到了提升,不再需要加入大量质量关键词,只需很少的语句就能生成高质量的图片。

A girl with red hair is doing her homework,
在这里插入图片描述

  1. 更好的人体结构:SDXL在人体结构方面有了更精细的控制,一定程度上解决了面部变形和多余肢体等问题。

A solitary, beautiful woman stands gracefully, waiting with an anxious expression on her face,
在这里插入图片描述

  1. 更多的绘画风格:SDXL支持在同一个模型中绘制各种风格的图像,包括照片风格、动漫风格、数字艺术风格、漫画书风格、折纸风格、线条风格、工艺黏土风格、3D模型风格、像素风格等等。

缺点

内存需求更大,对显卡显存的需求也随之增加。SDXL要求至少8GB的显存才能运行,要想流畅使用则需要超过12GB,相比之下,之前的SD1.5对显存的需求较低,最低要求仅为4GB。这也解释了为什么对于一些用户来说,使用SDXL需要配置较高的电脑硬件,而高端显卡的价格也相对较高。

SDXL的ComfyUI工作流搭建

在这里插入图片描述

模型与工作流下载

链接:https://pan.baidu.com/s/1gb6iybzyq71XGumTrguj8w
提取码:byyk
感兴趣可加入:566929147 企鹅群一起学习讨论

这篇关于AIGC——ComfyUI使用SDXL双模型的工作流(附件SDXL模型下载)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840221

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可