AAAI 独家 | 腾讯AI Lab 现场陈述论文:使众包配对排名聚合信息最大化的 HodgeRank

本文主要是介绍AAAI 独家 | 腾讯AI Lab 现场陈述论文:使众包配对排名聚合信息最大化的 HodgeRank,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!




前言:腾讯AI Lab共有12篇论文入选在美国新奥尔良举行的国际人工智能领域顶级学术会议AAAI 2018。腾讯技术工程官方号编译整理了现场陈述论文《使众包配对排名聚合信息最大化的 HodgeRank》(HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation),该论文被AAAI 2018录用为现场陈述报告(Oral Presentation),由中国科学院信息工程研究所、腾讯AI Lab、北京大学等共同完成。


中文概要

众包近来已经成为了许多领域解决大规模人力需求的有效范式。但是任务发布者通常预算有限,因此有必要使用一种明智的预算分配策略以获得更好的质量。在这篇论文中,我们在 HodgeRank 框架中研究了用于主动采样策略的信息最大化原理;其中HodgeRank 这种方法基于多个众包工人(worker)的配对排名数据的霍奇分解(Hodge Decomposition)。

该原理给出了两种主动采样情况:费希尔信息最大化(Fisher information maximization)和贝叶斯信息最大化(Bayesian information maximization)。其中费希尔信息最大化可以在无需考虑标签的情况下基于图的代数连接性(graph algebraic connectivity)的序列最大化而实现无监督式采样;贝叶斯信息最大化则可以选择从先验到后验的过程有最大信息增益的样本,这能实现利用所收集标签的监督式采样。实验表明,相比于传统的采样方案,我们提出的方法能提高采样效率,因此对实际的众包实验而言是有价值的。 


英文概要

Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. 

The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without consideringlabels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.


英文演讲PPT

In this paper, we present a principle of active sampling based on information maximization in the framework of HodgeRank.

 

Our contributions in this work are three fold:

1. A new version of Hodge decomposition of pairwise comparison data with multiple voters is presented. Within this framework, two schemes of information maximization, Fisher and Bayesian that lead to unsupervised and supervised sampling respectively, are systematically investigated.

2. Closed form update and a fast online algorithm are derived for supervised sampling with Bayesian information maximization for HodgeRank, which is shown faster and more accurate than the state-of-the-art method Crowd-BT (Chen et al.2013).

3. These schemes exhibit better sampling efficiency than random sampling as well as a better loop-free control in clique complex of paired comparisons, thus reduce the possibility of causing voting chaos by harmonic ranking (Saari 2001) (i.e., the phenomenon that the inconsistency of preference data may lead to totally different aggregate orders using different methods).

 



这篇关于AAAI 独家 | 腾讯AI Lab 现场陈述论文:使众包配对排名聚合信息最大化的 HodgeRank的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839670

相关文章

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Python如何获取域名的SSL证书信息和到期时间

《Python如何获取域名的SSL证书信息和到期时间》在当今互联网时代,SSL证书的重要性不言而喻,它不仅为用户提供了安全的连接,还能提高网站的搜索引擎排名,那我们怎么才能通过Python获取域名的S... 目录了解SSL证书的基本概念使用python库来抓取SSL证书信息安装必要的库编写获取SSL证书信息

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring