AAAI 独家 | 腾讯AI Lab 现场陈述论文:使众包配对排名聚合信息最大化的 HodgeRank

本文主要是介绍AAAI 独家 | 腾讯AI Lab 现场陈述论文:使众包配对排名聚合信息最大化的 HodgeRank,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!




前言:腾讯AI Lab共有12篇论文入选在美国新奥尔良举行的国际人工智能领域顶级学术会议AAAI 2018。腾讯技术工程官方号编译整理了现场陈述论文《使众包配对排名聚合信息最大化的 HodgeRank》(HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation),该论文被AAAI 2018录用为现场陈述报告(Oral Presentation),由中国科学院信息工程研究所、腾讯AI Lab、北京大学等共同完成。


中文概要

众包近来已经成为了许多领域解决大规模人力需求的有效范式。但是任务发布者通常预算有限,因此有必要使用一种明智的预算分配策略以获得更好的质量。在这篇论文中,我们在 HodgeRank 框架中研究了用于主动采样策略的信息最大化原理;其中HodgeRank 这种方法基于多个众包工人(worker)的配对排名数据的霍奇分解(Hodge Decomposition)。

该原理给出了两种主动采样情况:费希尔信息最大化(Fisher information maximization)和贝叶斯信息最大化(Bayesian information maximization)。其中费希尔信息最大化可以在无需考虑标签的情况下基于图的代数连接性(graph algebraic connectivity)的序列最大化而实现无监督式采样;贝叶斯信息最大化则可以选择从先验到后验的过程有最大信息增益的样本,这能实现利用所收集标签的监督式采样。实验表明,相比于传统的采样方案,我们提出的方法能提高采样效率,因此对实际的众包实验而言是有价值的。 


英文概要

Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. 

The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without consideringlabels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.


英文演讲PPT

In this paper, we present a principle of active sampling based on information maximization in the framework of HodgeRank.

 

Our contributions in this work are three fold:

1. A new version of Hodge decomposition of pairwise comparison data with multiple voters is presented. Within this framework, two schemes of information maximization, Fisher and Bayesian that lead to unsupervised and supervised sampling respectively, are systematically investigated.

2. Closed form update and a fast online algorithm are derived for supervised sampling with Bayesian information maximization for HodgeRank, which is shown faster and more accurate than the state-of-the-art method Crowd-BT (Chen et al.2013).

3. These schemes exhibit better sampling efficiency than random sampling as well as a better loop-free control in clique complex of paired comparisons, thus reduce the possibility of causing voting chaos by harmonic ranking (Saari 2001) (i.e., the phenomenon that the inconsistency of preference data may lead to totally different aggregate orders using different methods).

 



这篇关于AAAI 独家 | 腾讯AI Lab 现场陈述论文:使众包配对排名聚合信息最大化的 HodgeRank的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839670

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

Linux查看系统盘和SSD盘的容量、型号及挂载信息的方法

《Linux查看系统盘和SSD盘的容量、型号及挂载信息的方法》在Linux系统中,管理磁盘设备和分区是日常运维工作的重要部分,而lsblk命令是一个强大的工具,它用于列出系统中的块设备(blockde... 目录1. 查看所有磁盘的物理信息方法 1:使用 lsblk(推荐)方法 2:使用 fdisk -l(

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结