SHAP和LIME:Python机器学习模型解释

2024-03-23 16:20

本文主要是介绍SHAP和LIME:Python机器学习模型解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SHAP和LIME:Python机器学习模型解释

为了更好地展示,示例代码参见和鲸社区,一键运行

简介

机器学习模型在各个领域得到广泛应用,但其黑盒性质往往使人难以理解其决策过程,降低了模型的可信度和可靠性。为了解决这一问题,可解释性人工智能(XAI)应运而生,其目标是为模型的行为和决策提供清晰、可理解的解释。

一、SHAP

SHAP(SHapley Additive Explanations)是目前最流行的XAI工具之一,它可以解释各种机器学习模型,包括树模型、线性模型、深度学习模型等。SHAP的核心思想是将预测结果解释为各个特征的贡献值之和。

使用之前可能有两个考虑的问题:

  1. 需不需要对特征进行缩放(scale)?答案是不严格要求;
  2. 是不是要分割数据,使用train训练数据,而用test数据进行解释?答案也是皆可。

SHAP可以解释的内容:

  • 各个变量的贡献: SHAP可以计算每个特征对预测结果的贡献值,并以SHAP值的形式呈现。SHAP值越高,表示该特征对预测结果的影响越大。这是解释的核心内容,python的shap包提供了多种可视化的手段。在这里插入图片描述
    在这里插入图片描述

  • 变量内部值与SHAP value的关系: SHAP可以展示不同特征值对预测结果的影响。例如,对于一个房价预测模型,我们可以使用SHAP解释房屋面积对房价的影响。在这里插入图片描述

  • 变量间的交互作用: SHAP可以揭示变量之间的交互作用。例如,对于一个贷款违约预测模型,我们可以使用SHAP解释信用评分和收入对违约概率的交互作用。值得一提的是,探索交互作用使用TreeExplainer解释器会更加便捷,通用的解释器不支持计算交互作用值。

  • 在这里插入图片描述

二、LIME

LIME(Local Interpretable Model-Agnostic Explanations)是一种基于局部线性模型的解释方法。LIME可以解释任意类型的机器学习模型,但其解释效果与模型的复杂度有关。
LIME的工作原理是围绕目标预测点生成局部扰动数据,然后使用线性模型解释这些扰动数据对预测结果的影响。
LIME解释的内容重点放在变量对结局的贡献,还可以将连续变量分割成分类变量来进行解释。
在这里插入图片描述

总结

SHAP和LIME是两种强大的机器学习模型解释工具,它们可以帮助我们理解模型的决策过程,提高模型的可信度和可靠性。

这篇关于SHAP和LIME:Python机器学习模型解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838889

相关文章

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Python中对FFmpeg封装开发库FFmpy详解

《Python中对FFmpeg封装开发库FFmpy详解》:本文主要介绍Python中对FFmpeg封装开发库FFmpy,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、FFmpy简介与安装1.1 FFmpy概述1.2 安装方法二、FFmpy核心类与方法2.1 FF

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解