【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)

本文主要是介绍【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【CS231n】斯坦福大学李飞飞视觉识别课程笔记

由官方授权的CS231n课程笔记翻译知乎专栏——智能单元,比较详细地翻译了课程笔记,我这里就是参考和总结。

在这里插入图片描述

【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程
SciPy

Numpy提供了高性能的多维数组,以及计算和操作数组的基本工具。SciPy基于Numpy,提供了大量的计算和操作数组的函数,这些函数对于不同类型的科学和工程计算非常有用。

熟悉SciPy的最好方法就是阅读文档。我们会强调对于本课程有用的部分。

图像操作

SciPy提供了一些操作图像的基本函数。比如,它提供了将图像从硬盘读入到数组的函数,也提供了将数组中数据写入的硬盘成为图像的函数。下面是一个简单的例子:

from scipy.misc import imread, imsave, imresize# Read an JPEG image into a numpy array
img = imread('assets/cat.jpg')
print(img.dtype, img.shape)  # Prints "uint8 (400, 248, 3)"# We can tint the image by scaling each of the color channels
# by a different scalar constant. The image has shape (400, 248, 3);
# we multiply it by the array [1, 0.95, 0.9] of shape (3,);
# numpy broadcasting means that this leaves the red channel unchanged,
# and multiplies the green and blue channels by 0.95 and 0.9
# respectively.
img_tinted = img * [1, 0.95, 0.9]# Resize the tinted image to be 300 by 300 pixels.
img_tinted = imresize(img_tinted, (300, 300))# Write the tinted image back to disk
imsave('assets/cat_tinted.jpg', img_tinted)

译者注:如果运行这段代码出现类似ImportError: cannot import name imread的报错,那么请利用pip进行Pillow的下载,可以解决问题。命令:pip install Pillow。
在这里插入图片描述
左边是原始图片,右边是变色和变形的图片。

————————————————————————————————————————————————————————

MATLAB文件

函数scipy.io.loadmatscipy.io.savemat能够让你读和写MATLAB文件。具体请查看文档。

点之间的距离

SciPy定义了一些有用的函数,可以计算集合中点之间的距离。

函数scipy.spatial.distance.pdist能够计算集合中所有两点之间的距离:

import numpy as np
from scipy.spatial.distance import pdist, squareform# Create the following array where each row is a point in 2D space:
# [[0 1]
#  [1 0]
#  [2 0]]
x = np.array([[0, 1], [1, 0], [2, 0]])
print(x)# Compute the Euclidean distance between all rows of x.
# d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
# and d is the following array:
# [[ 0.          1.41421356  2.23606798]
#  [ 1.41421356  0.          1.        ]
#  [ 2.23606798  1.          0.        ]]
d = squareform(pdist(x, 'euclidean'))
print(d)

具体细节请阅读文档。

函数scipy.spatial.distance.cdist可以计算不同集合中点的距离,具体请查看文档。

Matplotlib

Matplotlib是一个作图库。这里简要介绍matplotlib.pyplot模块,功能和MATLAB的作图功能类似。

绘图

matplotlib库中最重要的函数是Plot。该函数允许你做出2D图形,如下:

import numpy as np
import matplotlib.pyplot as plt# Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)# Plot the points using matplotlib
plt.plot(x, y)
plt.show()  # You must call plt.show() to make graphics appear.

运行上面代码会产生下面的作图:

————————————————————————————————————————————————————————
在这里插入图片描述
————————————————————————————————————————————————————————
只需要少量工作,就可以一次画不同的线,加上标签,坐标轴标志等。

import numpy as np
import matplotlib.pyplot as plt# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()

————————————————————————————————————————————————————————
在这里插入图片描述
————————————————————————————————————————————————————————
可以在文档中关于plot的内容。

绘制多个图像

可以使用subplot函数来在一幅图中画不同的东西:

import numpy as np
import matplotlib.pyplot as plt# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)
# Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')# Show the figure.
plt.show()

————————————————————————————————————————————————————————
在这里插入图片描述
————————————————————————————————————————————————————————
关于subplot的更多细节,可以阅读文档。

图像

你可以使用imshow函数来显示图像,如下所示:

import numpy as np
from scipy.misc import imread, imresize
import matplotlib.pyplot as pltimg = imread('assets/cat.jpg')
img_tinted = img * [1, 0.95, 0.9]# Show the original image
plt.subplot(1, 2, 1)
plt.imshow(img)# Show the tinted image
plt.subplot(1, 2, 2)# A slight gotcha with imshow is that it might give strange results
# if presented with data that is not uint8. To work around this, we
# explicitly cast the image to uint8 before displaying it.
plt.imshow(np.uint8(img_tinted))
plt.show()

————————————————————————————————————————————————————————
在这里插入图片描述
————————————————————————————————————————————————————————

【CS231n】斯坦福大学李飞飞视觉识别课程笔记(一):Python Numpy教程(1)
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)

这篇关于【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837659

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.