【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)

本文主要是介绍【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【CS231n】斯坦福大学李飞飞视觉识别课程笔记

由官方授权的CS231n课程笔记翻译知乎专栏——智能单元,比较详细地翻译了课程笔记,我这里就是参考和总结。

在这里插入图片描述

【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程
SciPy

Numpy提供了高性能的多维数组,以及计算和操作数组的基本工具。SciPy基于Numpy,提供了大量的计算和操作数组的函数,这些函数对于不同类型的科学和工程计算非常有用。

熟悉SciPy的最好方法就是阅读文档。我们会强调对于本课程有用的部分。

图像操作

SciPy提供了一些操作图像的基本函数。比如,它提供了将图像从硬盘读入到数组的函数,也提供了将数组中数据写入的硬盘成为图像的函数。下面是一个简单的例子:

from scipy.misc import imread, imsave, imresize# Read an JPEG image into a numpy array
img = imread('assets/cat.jpg')
print(img.dtype, img.shape)  # Prints "uint8 (400, 248, 3)"# We can tint the image by scaling each of the color channels
# by a different scalar constant. The image has shape (400, 248, 3);
# we multiply it by the array [1, 0.95, 0.9] of shape (3,);
# numpy broadcasting means that this leaves the red channel unchanged,
# and multiplies the green and blue channels by 0.95 and 0.9
# respectively.
img_tinted = img * [1, 0.95, 0.9]# Resize the tinted image to be 300 by 300 pixels.
img_tinted = imresize(img_tinted, (300, 300))# Write the tinted image back to disk
imsave('assets/cat_tinted.jpg', img_tinted)

译者注:如果运行这段代码出现类似ImportError: cannot import name imread的报错,那么请利用pip进行Pillow的下载,可以解决问题。命令:pip install Pillow。
在这里插入图片描述
左边是原始图片,右边是变色和变形的图片。

————————————————————————————————————————————————————————

MATLAB文件

函数scipy.io.loadmatscipy.io.savemat能够让你读和写MATLAB文件。具体请查看文档。

点之间的距离

SciPy定义了一些有用的函数,可以计算集合中点之间的距离。

函数scipy.spatial.distance.pdist能够计算集合中所有两点之间的距离:

import numpy as np
from scipy.spatial.distance import pdist, squareform# Create the following array where each row is a point in 2D space:
# [[0 1]
#  [1 0]
#  [2 0]]
x = np.array([[0, 1], [1, 0], [2, 0]])
print(x)# Compute the Euclidean distance between all rows of x.
# d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
# and d is the following array:
# [[ 0.          1.41421356  2.23606798]
#  [ 1.41421356  0.          1.        ]
#  [ 2.23606798  1.          0.        ]]
d = squareform(pdist(x, 'euclidean'))
print(d)

具体细节请阅读文档。

函数scipy.spatial.distance.cdist可以计算不同集合中点的距离,具体请查看文档。

Matplotlib

Matplotlib是一个作图库。这里简要介绍matplotlib.pyplot模块,功能和MATLAB的作图功能类似。

绘图

matplotlib库中最重要的函数是Plot。该函数允许你做出2D图形,如下:

import numpy as np
import matplotlib.pyplot as plt# Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)# Plot the points using matplotlib
plt.plot(x, y)
plt.show()  # You must call plt.show() to make graphics appear.

运行上面代码会产生下面的作图:

————————————————————————————————————————————————————————
在这里插入图片描述
————————————————————————————————————————————————————————
只需要少量工作,就可以一次画不同的线,加上标签,坐标轴标志等。

import numpy as np
import matplotlib.pyplot as plt# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()

————————————————————————————————————————————————————————
在这里插入图片描述
————————————————————————————————————————————————————————
可以在文档中关于plot的内容。

绘制多个图像

可以使用subplot函数来在一幅图中画不同的东西:

import numpy as np
import matplotlib.pyplot as plt# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)
# Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')# Show the figure.
plt.show()

————————————————————————————————————————————————————————
在这里插入图片描述
————————————————————————————————————————————————————————
关于subplot的更多细节,可以阅读文档。

图像

你可以使用imshow函数来显示图像,如下所示:

import numpy as np
from scipy.misc import imread, imresize
import matplotlib.pyplot as pltimg = imread('assets/cat.jpg')
img_tinted = img * [1, 0.95, 0.9]# Show the original image
plt.subplot(1, 2, 1)
plt.imshow(img)# Show the tinted image
plt.subplot(1, 2, 2)# A slight gotcha with imshow is that it might give strange results
# if presented with data that is not uint8. To work around this, we
# explicitly cast the image to uint8 before displaying it.
plt.imshow(np.uint8(img_tinted))
plt.show()

————————————————————————————————————————————————————————
在这里插入图片描述
————————————————————————————————————————————————————————

【CS231n】斯坦福大学李飞飞视觉识别课程笔记(一):Python Numpy教程(1)
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)

这篇关于【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837659

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统