深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation)

本文主要是介绍深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文笔记(六)--- FCN 全卷积网络

 

FullyConvolutional Networks for Semantic Segmentation

Author:J Long , E Shelhamer, T Darrell

Year: 2015

 

1、  导引

 

通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。以AlexNet为代表的经典CNN结构适合于图像级分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的向量表示输入图像属于每一类的概率(softmax归一化)。

而要做SemanticSegmentation(语义分割),希望能够直接输出一幅分割图像结果,所以就有了本篇FCN网络的提出。

 

 

 

2、模型解读

 

①FCN将传统CNN中的全连接层转化成一个个的卷积层。如下图所示,在传统的CNN结构中,前5层是卷积层,第6层和第7层分别是一个长度为4096的一维向量,第8层是长度为1000的一维向量,分别对应1000个类别的概率。FCN将这3层表示为卷积层卷积核的大小(宽,高,通道数)分别为(1,1,4096)、(1,1,4096)、(1,1,1000)。所有的层都是卷积层,故称为全卷积网络。

 

②但是,经过多次卷积(还有pooling)以后,得到的图像越来越小,分辨率越来越低。为了从这个分辨率低的粗略图像恢复到原图的分辨率,FCN使用了增采样操作。这个增采样是通过反卷积来实现的(deconvolution),文中用的反卷积操作很简单,后来有其他人就在反卷积这一步上做了进一步优化,使得分割结果更为准确。

 

③对第5层的输出(32倍放大)反卷积到原图大小,得到的结果还是不够精确,还是有细节内容丢失了。于是作者采用skiplayer的方法,将第4层的输出和第3层的输出也依次反卷积,分别需要16倍和8倍上采样,结果就精细一些了。下图是这个卷积和反卷积上采样的过程:

我们来把位置稍微调整一下利于理解:

 

在浅层处减小upsampling的步长,得到的finelayer 和 高层得到的coarselayer做融合,然后再upsampling得到输出。这种做法兼顾local和global信息,即文中说的combiningwhat and where,取得了不错的效果提升。FCN-32s为59.4,FCN-16s提升到了62.4,FCN-8s提升到62.7。可以看出效果还是很明显的。

 

3、 创新点分析

①由于没有全连接层的存在,所以输入图像的尺寸要求并不固定了。这个原因是因为全连接层是一个矩阵乘法的操作,可以自己去想一想。

 

②实现的是对每个像素点的分类预测:

Pixel-wiseprediction

 

之所以能做到这样,是因为卷积层的输出的结果是datamap,而不是一个向量!经过反卷积后得到与原图一样大小的1000层heatmap,每一层代表一个类,然后观察每个位置的像素,在哪一层它这个点对应的值最大,就认为这个像素点属于这一层的类,

 

 

 

就比如图中点猫那个位置的点,在tabby cat这个类的heatmap上表现的值很高,所以认为那一坨像素点是属于tabby cat这个类的。

从而这样对每个像素点进行分类,最后输出的就是分割好的图像。

 

 

 

 

 

 

 

 

 

 

 

这篇关于深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837460

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实