深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation)

本文主要是介绍深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文笔记(六)--- FCN 全卷积网络

 

FullyConvolutional Networks for Semantic Segmentation

Author:J Long , E Shelhamer, T Darrell

Year: 2015

 

1、  导引

 

通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。以AlexNet为代表的经典CNN结构适合于图像级分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的向量表示输入图像属于每一类的概率(softmax归一化)。

而要做SemanticSegmentation(语义分割),希望能够直接输出一幅分割图像结果,所以就有了本篇FCN网络的提出。

 

 

 

2、模型解读

 

①FCN将传统CNN中的全连接层转化成一个个的卷积层。如下图所示,在传统的CNN结构中,前5层是卷积层,第6层和第7层分别是一个长度为4096的一维向量,第8层是长度为1000的一维向量,分别对应1000个类别的概率。FCN将这3层表示为卷积层卷积核的大小(宽,高,通道数)分别为(1,1,4096)、(1,1,4096)、(1,1,1000)。所有的层都是卷积层,故称为全卷积网络。

 

②但是,经过多次卷积(还有pooling)以后,得到的图像越来越小,分辨率越来越低。为了从这个分辨率低的粗略图像恢复到原图的分辨率,FCN使用了增采样操作。这个增采样是通过反卷积来实现的(deconvolution),文中用的反卷积操作很简单,后来有其他人就在反卷积这一步上做了进一步优化,使得分割结果更为准确。

 

③对第5层的输出(32倍放大)反卷积到原图大小,得到的结果还是不够精确,还是有细节内容丢失了。于是作者采用skiplayer的方法,将第4层的输出和第3层的输出也依次反卷积,分别需要16倍和8倍上采样,结果就精细一些了。下图是这个卷积和反卷积上采样的过程:

我们来把位置稍微调整一下利于理解:

 

在浅层处减小upsampling的步长,得到的finelayer 和 高层得到的coarselayer做融合,然后再upsampling得到输出。这种做法兼顾local和global信息,即文中说的combiningwhat and where,取得了不错的效果提升。FCN-32s为59.4,FCN-16s提升到了62.4,FCN-8s提升到62.7。可以看出效果还是很明显的。

 

3、 创新点分析

①由于没有全连接层的存在,所以输入图像的尺寸要求并不固定了。这个原因是因为全连接层是一个矩阵乘法的操作,可以自己去想一想。

 

②实现的是对每个像素点的分类预测:

Pixel-wiseprediction

 

之所以能做到这样,是因为卷积层的输出的结果是datamap,而不是一个向量!经过反卷积后得到与原图一样大小的1000层heatmap,每一层代表一个类,然后观察每个位置的像素,在哪一层它这个点对应的值最大,就认为这个像素点属于这一层的类,

 

 

 

就比如图中点猫那个位置的点,在tabby cat这个类的heatmap上表现的值很高,所以认为那一坨像素点是属于tabby cat这个类的。

从而这样对每个像素点进行分类,最后输出的就是分割好的图像。

 

 

 

 

 

 

 

 

 

 

 

这篇关于深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837460

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499