Google colab中如何从kaggle中接入数据?

2024-03-22 22:36

本文主要是介绍Google colab中如何从kaggle中接入数据?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

使用google colab进行数据分析和探索时,可引用的数据源包括但不限于:1.可上传的数据文件用本地加载的的方式打开数据资源;2.从网络链接中直接打开后加载到缓存中的文件资源;3.通过API或者外部的开放接口加载数据;

今天要介绍的就是第三种,我试图教会你如何从colab中直接从kaggle加载数据集。理论上这种方法适用于所有的云端jupyter笔记本。实施过程中如果遇到预期之外的问题,欢迎留言交流讨论。

本文涉及到两大平台内容,所以我默认你已经拥有了,并且使用过了一段时间的google账号和kaggle账号。首先介绍一下google的colab,相比于其他国内外平台,它对于免费账号也分配足够可用的GPU和TPU资源。而且升级到pro版本后,更可以借助copilot的AI补全代码功能,减少开发压力。

Google Colab 是一项托管 Jupyter Notebook 服务,无需设置即可使用,并提供对计算资源(包括 GPU 和 TPU)的免费访问。 Colab 特别适合机器学习、数据科学和教育。

对于在云端笔记本中使用kaggle数据,完全可以通过先将kaggle数据下载至本地,再将数据上传到服务器的方式解决。但本文旨在摆脱这种冗长的处理办法,试图一步到位,而对于无法实现本教程中操作办法的同学们,还是建议一切以能用为主,简化流程乃是第二位的。

kaggle 部分

  • 点击你的头像,选择Settings
  • 下拉至 API,创建一个用于google colab使用的token,点击create new Token后,会自动开始下载一个kaggle.json的配置文件,这是你的Kaggle API密钥文件,记住它的存储位置,稍后我们会用到。

在这里插入图片描述

Google Colab部分

1.将kaggle.json文件上传至Google Drive

你新建的jupyter笔记本也会默认保存在Drive的某个位置,与其他的google应用一起共享Drive的免费空间。将kaggle.json文件通过 “上传” 功能传至Google Drive,记住它的位置,之后要用。

如果是其他的在线jupyter内容,请上传至对应云端服务器上存储jupyter笔记本位置的同一文件夹内。(其实不用放到一起,只是为了便于你方便找到和操作)

上传完毕之后,在jupyter执行如下命令,查看对应的存储位置,如果当前的位置和你的jupyter位置不对应,那么就在下面给你预留的代码里改一下路径:

import os# 当前工作目录
print("当前工作目录:", os.getcwd())# 改变工作目录到新的文件夹
os.chdir("/content/drive/MyDrive/Colab Notebooks")		## 这里替换成kaggle.json存储的所在目录# 现在的工作目录
print("新的工作目录:", os.getcwd())

当前工作目录: /content/drive/My Drive
新的工作目录: /content/drive/MyDrive/Colab Notebooks

确保输出结果正确即可。

2.打通Google Colab与Google Drive之间的连接(其他平台请略过这一步)

Google Drive即谷歌云盘,是谷歌生态下的公共存储空间。它本身支持多种格式文件的存储,以各种格式存储的文件,又能以不同的Google云端应用在线打开并执行操作。Colab作为.ipynb格式文件的编辑器,只要在colab中打通与Google Drive的连接,就能直接访问其中的内容。

操作很简单,只需要点击这个图标,就能够允许这个jupyter笔记本关联drive,受限于网络和网盘内的文件数量,反应时长存在差异,所以只需要参考最终图标的状态是图中这个样子,就是关联成功的状态了。

打通Google Colab与Google Drive之间的连接

然后,加载云盘存储,使用以下代码挂载Google Drive:

# 挂载Google Drive: 如果文件确实存在于Google Drive中,
# 确保正确挂载了Google Drive到Colab。使用以下代码挂载Google Drive:
from google.colab import drive
drive.mount('/content/drive')

3.获取colab对kaggle.json的访问权限

‘/content/drive/MyDrive/Colab Notebooks/kaggle.json’ 是你kaggle.json存储的位置。还记得我建议你尽可能和jupyter笔记本放在一起吗?只需要把相同的路径填入就可以。而且也不需要在执行下方的复制操作。

如果放在了其他位置也不要紧,执行以下的全部代码,会复制一份kaggle.json到你当前的工作目录里,这个工作目录是你第一步设置的位置。

# 复制文件到正确的位置: 复制 kaggle.json 文件到了
# 使用以下代码检查文件是否成功复制到了正确的位置:
import shutil
shutil.copy("/content/drive/MyDrive/Colab Notebooks/kaggle.json", "/kaggle.json")# 获取对kaggle文件的访问权限
permissions = oct(os.stat("/root/.kaggle/kaggle.json").st_mode)[-3:]print("文件权限:", permissions)

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(“/content/drive”, force_remount=True).
文件权限: 600

当访问权限返回代码码值为600时,表示结果正常。已经获得了权限。

PS:如果此处报错提示路径类的错误,比如没找到.kaggle文件夹,

mkdir ~/.kaggle

新建一个就好了!
如果你是在colab里操作的,因为本身是jupyter,所以执行这些批处理命令时,要在前面加一个叹号,

!mkdir ~/.kaggle

搞定。

4.从Kaggle下载数据集到Drive内

这段代码来自于kaggle的dataset界面,我这里举个例子,如果想要获取这个数据集,那么就可以在这里点击‘copy API command’,他的内容是:

kaggle datasets download -d openfoodfacts/world-food-facts

在这里插入图片描述

随后在jupyter内执行以下代码

# 下载原始数据到本地云盘内
! kaggle datasets download -d openfoodfacts/world-food-facts  -p /content/sample_data

对参数的解释,

-d openfoodfacts/world-food-facts 表示数据集名称:world-food-facts 创建人名称:openfoodfacts
-p /content/sample_data 指定数据集文件下载到Google Drive的对应位置

5.如果下载的是压缩包格式…

import zipfile
# 切换到存储文件对应的文件夹
os.chdir("/content/sample_data")# 要解压的文件名
zip_file = "world-food-facts.zip"# 新建的文件夹名称
extract_folder = "world-food-facts"# 创建新的文件夹
os.makedirs(extract_folder, exist_ok=True)# 解压文件到新建的文件夹中
with zipfile.ZipFile(zip_file, 'r') as zip_ref:zip_ref.extractall(extract_folder)print("文件已解压到:", os.path.abspath(extract_folder))# 重新切换回工作环境内
os.chdir("/content/drive/MyDrive/Colab Notebooks")

准备完毕

ok。开始你的表演吧,接下来的操作你应该就全会了,

import pandas as pd
food = pd.read_csv('/content/sample_data/world-food-facts/en.openfoodfacts.org.products.tsv', sep='\t')

<ipython-input-40-3044500f6262>:2: DtypeWarning: Columns (0,3,5,19,20,24,25,26,27,28,36,37,38,39,48) have mixed types. Specify dtype option on import or set low_memory=False.
food = pd.read_csv(‘/content/sample_data/world-food-facts/en.openfoodfacts.org.products.tsv’, sep=‘\t’)

food.head()

在这里插入图片描述
是不是熟悉的感觉。开始操作吧!

这篇关于Google colab中如何从kaggle中接入数据?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836348

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语