Google colab中如何从kaggle中接入数据?

2024-03-22 22:36

本文主要是介绍Google colab中如何从kaggle中接入数据?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

使用google colab进行数据分析和探索时,可引用的数据源包括但不限于:1.可上传的数据文件用本地加载的的方式打开数据资源;2.从网络链接中直接打开后加载到缓存中的文件资源;3.通过API或者外部的开放接口加载数据;

今天要介绍的就是第三种,我试图教会你如何从colab中直接从kaggle加载数据集。理论上这种方法适用于所有的云端jupyter笔记本。实施过程中如果遇到预期之外的问题,欢迎留言交流讨论。

本文涉及到两大平台内容,所以我默认你已经拥有了,并且使用过了一段时间的google账号和kaggle账号。首先介绍一下google的colab,相比于其他国内外平台,它对于免费账号也分配足够可用的GPU和TPU资源。而且升级到pro版本后,更可以借助copilot的AI补全代码功能,减少开发压力。

Google Colab 是一项托管 Jupyter Notebook 服务,无需设置即可使用,并提供对计算资源(包括 GPU 和 TPU)的免费访问。 Colab 特别适合机器学习、数据科学和教育。

对于在云端笔记本中使用kaggle数据,完全可以通过先将kaggle数据下载至本地,再将数据上传到服务器的方式解决。但本文旨在摆脱这种冗长的处理办法,试图一步到位,而对于无法实现本教程中操作办法的同学们,还是建议一切以能用为主,简化流程乃是第二位的。

kaggle 部分

  • 点击你的头像,选择Settings
  • 下拉至 API,创建一个用于google colab使用的token,点击create new Token后,会自动开始下载一个kaggle.json的配置文件,这是你的Kaggle API密钥文件,记住它的存储位置,稍后我们会用到。

在这里插入图片描述

Google Colab部分

1.将kaggle.json文件上传至Google Drive

你新建的jupyter笔记本也会默认保存在Drive的某个位置,与其他的google应用一起共享Drive的免费空间。将kaggle.json文件通过 “上传” 功能传至Google Drive,记住它的位置,之后要用。

如果是其他的在线jupyter内容,请上传至对应云端服务器上存储jupyter笔记本位置的同一文件夹内。(其实不用放到一起,只是为了便于你方便找到和操作)

上传完毕之后,在jupyter执行如下命令,查看对应的存储位置,如果当前的位置和你的jupyter位置不对应,那么就在下面给你预留的代码里改一下路径:

import os# 当前工作目录
print("当前工作目录:", os.getcwd())# 改变工作目录到新的文件夹
os.chdir("/content/drive/MyDrive/Colab Notebooks")		## 这里替换成kaggle.json存储的所在目录# 现在的工作目录
print("新的工作目录:", os.getcwd())

当前工作目录: /content/drive/My Drive
新的工作目录: /content/drive/MyDrive/Colab Notebooks

确保输出结果正确即可。

2.打通Google Colab与Google Drive之间的连接(其他平台请略过这一步)

Google Drive即谷歌云盘,是谷歌生态下的公共存储空间。它本身支持多种格式文件的存储,以各种格式存储的文件,又能以不同的Google云端应用在线打开并执行操作。Colab作为.ipynb格式文件的编辑器,只要在colab中打通与Google Drive的连接,就能直接访问其中的内容。

操作很简单,只需要点击这个图标,就能够允许这个jupyter笔记本关联drive,受限于网络和网盘内的文件数量,反应时长存在差异,所以只需要参考最终图标的状态是图中这个样子,就是关联成功的状态了。

打通Google Colab与Google Drive之间的连接

然后,加载云盘存储,使用以下代码挂载Google Drive:

# 挂载Google Drive: 如果文件确实存在于Google Drive中,
# 确保正确挂载了Google Drive到Colab。使用以下代码挂载Google Drive:
from google.colab import drive
drive.mount('/content/drive')

3.获取colab对kaggle.json的访问权限

‘/content/drive/MyDrive/Colab Notebooks/kaggle.json’ 是你kaggle.json存储的位置。还记得我建议你尽可能和jupyter笔记本放在一起吗?只需要把相同的路径填入就可以。而且也不需要在执行下方的复制操作。

如果放在了其他位置也不要紧,执行以下的全部代码,会复制一份kaggle.json到你当前的工作目录里,这个工作目录是你第一步设置的位置。

# 复制文件到正确的位置: 复制 kaggle.json 文件到了
# 使用以下代码检查文件是否成功复制到了正确的位置:
import shutil
shutil.copy("/content/drive/MyDrive/Colab Notebooks/kaggle.json", "/kaggle.json")# 获取对kaggle文件的访问权限
permissions = oct(os.stat("/root/.kaggle/kaggle.json").st_mode)[-3:]print("文件权限:", permissions)

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(“/content/drive”, force_remount=True).
文件权限: 600

当访问权限返回代码码值为600时,表示结果正常。已经获得了权限。

PS:如果此处报错提示路径类的错误,比如没找到.kaggle文件夹,

mkdir ~/.kaggle

新建一个就好了!
如果你是在colab里操作的,因为本身是jupyter,所以执行这些批处理命令时,要在前面加一个叹号,

!mkdir ~/.kaggle

搞定。

4.从Kaggle下载数据集到Drive内

这段代码来自于kaggle的dataset界面,我这里举个例子,如果想要获取这个数据集,那么就可以在这里点击‘copy API command’,他的内容是:

kaggle datasets download -d openfoodfacts/world-food-facts

在这里插入图片描述

随后在jupyter内执行以下代码

# 下载原始数据到本地云盘内
! kaggle datasets download -d openfoodfacts/world-food-facts  -p /content/sample_data

对参数的解释,

-d openfoodfacts/world-food-facts 表示数据集名称:world-food-facts 创建人名称:openfoodfacts
-p /content/sample_data 指定数据集文件下载到Google Drive的对应位置

5.如果下载的是压缩包格式…

import zipfile
# 切换到存储文件对应的文件夹
os.chdir("/content/sample_data")# 要解压的文件名
zip_file = "world-food-facts.zip"# 新建的文件夹名称
extract_folder = "world-food-facts"# 创建新的文件夹
os.makedirs(extract_folder, exist_ok=True)# 解压文件到新建的文件夹中
with zipfile.ZipFile(zip_file, 'r') as zip_ref:zip_ref.extractall(extract_folder)print("文件已解压到:", os.path.abspath(extract_folder))# 重新切换回工作环境内
os.chdir("/content/drive/MyDrive/Colab Notebooks")

准备完毕

ok。开始你的表演吧,接下来的操作你应该就全会了,

import pandas as pd
food = pd.read_csv('/content/sample_data/world-food-facts/en.openfoodfacts.org.products.tsv', sep='\t')

<ipython-input-40-3044500f6262>:2: DtypeWarning: Columns (0,3,5,19,20,24,25,26,27,28,36,37,38,39,48) have mixed types. Specify dtype option on import or set low_memory=False.
food = pd.read_csv(‘/content/sample_data/world-food-facts/en.openfoodfacts.org.products.tsv’, sep=‘\t’)

food.head()

在这里插入图片描述
是不是熟悉的感觉。开始操作吧!

这篇关于Google colab中如何从kaggle中接入数据?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836348

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro