使用Python+OpenCV+Keras实现植物幼苗分类(附python演练)

2024-03-22 16:10

本文主要是介绍使用Python+OpenCV+Keras实现植物幼苗分类(附python演练),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

本文将学习和构建一个 CNN 模型,以从图像中对幼苗的种类进行分类。该数据集有12组图像,我们的最终目的是从图像中对植物物种进行分类。

如果你想了解有关数据集的更多信息,请查看此链接:https://www.kaggle.com/c/plant-seedlings-classification/data。

我们将执行多个步骤,例如导入库和模块、读取图像并调整它们的大小、图像清理、图像预处理、模型构建、模型训练、减少过度拟合,最后对测试数据集进行预测。

使用深度学习解决数独,查看这里:https://www.analyticsvidhya.com/blog/2021/05/solving-sudoku-from-image-using-deep-learning-with-python-code/

目录

  • 问题陈述

  • 导入库

  • 获取数据并调整图像大小

  • 清理图像并去除背景

  • 将标签转换为数字

  • 定义我们的模型并拆分数据集

  • 防止过拟合

  • 定义卷积神经网络

  • 将 CNN 拟合到数据上

  • 混淆矩阵

  • 获得预测

问题陈述

该数据集由奥尔胡斯大学信号处理小组提供。这是一个典型的图像识别问题陈述。我们提供了一个图像数据集,其中包含处于不同生长阶段的植物照片。每张照片都有其唯一的 ID 和文件名。

该数据集包含来自 12 个植物物种的 960 种独特植物。最终目标是构建一个能够从照片中确定植物种类的分类器。

物种列表

  • Black-grass

  • Charlock

  • Cleavers

  • Common Chickweed

  • Common wheat

  • Fat Hen

  • Loose Silky-bent

  • Maize

  • Scentless Mayweed

  • Shepherds Purse

  • Small-flowered Cranesbill

  • Sugar beet

导入库

首先导入所有必要的库以供我们进一步分析。我们将使用 NumPy、Pandas、matplotlib、OpenCV、Keras 和 sci-kit-learn。

检查以下命令以导入所有必需的库

import numpy as np # MATRIX OPERATIONS
import pandas as pd # EFFICIENT DATA STRUCTURES
import matplotlib.pyplot as plt # GRAPHING AND VISUALIZATIONS
import math # MATHEMATICAL OPERATIONS
import cv2 # IMAGE PROCESSING - OPENCV
from glob import glob # FILE OPERATIONS
import itertools
# KERAS AND SKLEARN MODULES
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import BatchNormalization
from keras.callbacks import ModelCheckpoint,ReduceLROnPlateau,CSVLogger
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# GLOBAL VARIABLES
scale = 70
seed = 7
获取数据并调整图像大小

为了训练我们的模型,我们需要先读取数据。我们的数据集有不同大小的图像,因此我们将调整图像的大小。读取数据并调整其大小只需一步即可完成。查看以下代码以获取有关如何执行不同操作的完整信息。

path_to_images =

这篇关于使用Python+OpenCV+Keras实现植物幼苗分类(附python演练)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835645

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC