【理解机器学习算法】之Clustering算法(K-Means)

2024-03-22 11:04

本文主要是介绍【理解机器学习算法】之Clustering算法(K-Means),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实现 K-means 聚类从零开始涉及几个关键步骤:初始化质心、将点分配给最近的质心、根据分配更新质心,以及重复这个过程直到收敛。这里是一个基本的 Python 实现:

K-means 算法步骤:

  1. 初始化质心:从数据点中随机选择 `k` 个初始质心。
  2. 将点分配给最近的质心:对于数据集中的每个点,找到最近的质心并将该点分配到那个簇中。
  3. 更新质心:重新计算作为每个簇中所有点的平均值的质心。
  4. 重复:重复步骤 2 和 3,直到质心不再显著变化,表明算法已经收敛。
import numpy as npdef initialize_centroids(points, k):"""从数据点中随机初始化质心。"""indices = np.random.choice(points.shape[0], k, replace=False)return points[indices]def closest_centroid(points, centroids):"""返回一个数组,包含每个点到最近质心的索引。"""distances = np.sqrt(((points - centroids[:, np.newaxis])**2).sum(axis=2))return np.argmin(distances, axis=0)def update_centroids(points, closest, centroids):"""更新质心为每个簇分配的所有点的平均值。"""new_centroids = np.array([points[closest==k].mean(axis=0) for k in range(centroids.shape[0])])return new_centroidsdef k_means(points, k, max_iters=100):"""实现 K-means 算法。"""centroids = initialize_centroids(points, k)for _ in range(max_iters):closest = closest_centroid(points, centroids)new_centroids = update_centroids(points, closest, centroids)# 检查收敛if np.all(centroids == new_centroids):breakcentroids = new_centroidsreturn centroids, closest# 示例用法
if __name__ == "__main__":# 生成一些数据(例如,在 2D 空间中的两个簇)np.random.seed(42)cluster_1 = np.random.normal(0, 1, (100, 2))cluster_2 = np.random.normal(5, 1, (100, 2))points = np.vstack((cluster_1, cluster_2))# 应用 K-meansk = 2centroids, assignments = k_means(points, k)print("质心:\n", centroids)

K-means 算法的计算成本和时间成本主要依赖于几个因素:数据点的数量、特征的维数、质心的数量(k 值)以及算法迭代次数。算法的时间复杂度通常表示为 O(n*k*i*d),其中 n 是数据点的数量,k 是质心的数量,i 是迭代次数,d 是特征的维数。

计算成本和时间成本:

  • 数据点数量(n):数据点越多,每次计算距离和更新质心的时间就越长。
  • 质心数量(k):质心越多,计算每个数据点到每个质心的距离的成本就越高。
  • 迭代次数(i):算法需要更多的迭代次数来收敛到最终的簇分配,特别是对于初始质心选择不理想或数据分布复杂的情况。
  • 特征的维数(d):维度越高,计算距离就越复杂,因此时间成本更高。

局限性:

  • 初始质心的选择:K-means 的结果可能对初始质心的选择非常敏感,不同的初始质心可能导致不同的最终簇划分。
  • 簇的形状和大小:K-means 假设每个簇在所有方向上的方差都相同,因此它最适合识别球形簇。对于非球形簇或大小差异很大的簇,K-means 可能不会很有效。
  • 确定 k 值:在实际应用中,确定最佳的 k 值(即簇的数量)通常是一个挑战。
  • 局部最小值:K-means 可能会收敛到局部最优解而不是全局最优解,这意味着算法的结果可能不是最优的簇划分。

由于这些限制,虽然 K-means 在许多情况下都是一个有用和高效的聚类方法,但在应用时需要考虑数据的特性,并可能需要尝试不同的初始质心或使用如 K-means++ 这样的方法来改进初始质心的选择。

绘制二维的K-means

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans# Generate synthetic two-dimensional data
X, y_true = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# Apply KMeans clustering
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)# Plot the data points
plt.scatter(X[:, 0], X[:, 1], s=50, c=y_kmeans, cmap='viridis')# Plot the centroids
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.5)
plt.title('K-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()

这篇关于【理解机器学习算法】之Clustering算法(K-Means)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835171

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.