【C++刷题】优选算法——动态规划第二辑

2024-03-22 10:52

本文主要是介绍【C++刷题】优选算法——动态规划第二辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 按摩师
状态表示:dp[i]: 表示到i位置时的,最长预约时长
状态转移方程:dp[i] = max(dp[0], dp[1], ..., dp[i-2]) + nums[i]
int massage(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 0) return 0;else if(nums.size() == 1) return nums[0];else if(nums.size() == 2) return max(nums[0], nums[1]);// 1.dp数组vector<int> dp(nums.size());// 2.初始化dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);// 3.状态转移方程for(int i = 2; i < dp.size(); ++i){int max = dp[0];for(int j = 1; j < i - 1; ++j){if(dp[j] > max) max = dp[j];}dp[i] = max + nums[i];}// 4.返回值int max = dp[0];for(int j = 1; j < dp.size(); ++j){if(dp[j] > max) max = dp[j];}return max;
}
状态表示:dp[i]: 表示到i位置时的,最长预约时长细化:f[i]: 表示到i位置时,nums[i]必选,此时的最长预约时长g[i]: 表示到i位置时,nums[i]不选,此时的最长预约时长
状态转移方程:f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);
int massage(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 0) return 0;// 1.dp数组vector<int> f(nums.size());vector<int> g(nums.size());// 2.初始化f[0] = nums[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < nums.size(); ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
  1. 打家劫舍 II
通过分类讨论,将环形问题,转换为线性问题
状态表示:dp[i]: 表示到i位置时,rob的最大金额细化:f[i]: 表示到i位置时,nums[i]必选,此时rob的最大金额g[i]: 表示到i位置时,nums[i]不选,此时rob的最大金额
状态转移方程:f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);
int rob_helper(vector<int>& nums)
{// 1.dp数组vector<int> f(nums.size());vector<int> g(nums.size());// 2.初始化f[0] = nums[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < nums.size(); ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
int rob(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 1) return nums[0];else if(nums.size() == 2) return max(nums[0], nums[1]);else if(nums.size() == 3) return max(max(nums[0], nums[1]), nums[2]);vector<int> rob_first = vector<int>(nums.begin() + 2, nums.end() - 1);vector<int> rob_not_first = vector<int>(nums.begin() + 1, nums.end());return max(nums[0] + rob_helper(rob_first), rob_helper(rob_not_first));
}
  1. 删除并获得点数
问题转化:将nums中的数统计到一个新数组v中,再在v中做一次“打家劫舍”问题即可
int deleteAndEarn(vector<int>& nums)
{// 0.问题转化int max_size = 0;for(int e : nums){if(e > max_size) max_size = e;}vector<int> v(max_size + 1);for(int e : nums){v[e] += e;}// 1.dp数组vector<int> f(v.size());vector<int> g(v.size());// 2.初始化f[0] = v[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < v.size(); ++i){f[i] = g[i - 1] + v[i];g[i] = std::max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
  1. 粉刷房子
状态表示:dp[i][0]: 表示到i位置为止,粉刷成红色的最小花费dp[i][1]: 表示到i位置为止,粉刷成蓝色的最小花费dp[i][2]: 表示到i位置为止,粉刷成绿色的最小花费
状态转移方程:dp[i][0] = min(dp[i-1][1], dp[i-1][2]);dp[i][1] = min(dp[i-1][0], dp[i-1][2]);dp[i][2] = min(dp[i-1][0], dp[i-1][1]);
int minCost(vector<vector<int>>& costs)
{// 1.dp数组vector<vector<int>> dp(costs.size(), vector<int>(3));// 2.初始化dp[0][0] = costs[0][0];dp[0][1] = costs[0][1];dp[0][2] = costs[0][2];// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i][1];dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i][2];}// 4.返回值return min(min(dp.back()[0], dp.back()[1]), dp.back()[2]);
}
  1. 买卖股票的最佳时机含冷冻期
状态表示:dp[i]: 表示第i天结束之后,此时的最大利润dp[i][0]: 表示第i天结束后,处于买入状态时的最大利润dp[i][1]: 表示第i天结束后,处于可交易状态时的最大利润dp[i][2]: 表示第i天结束后,处于冷冻期状态时的最大利润
状态转移方程:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];
int maxProfit(vector<int>& prices)
{// 1.dp数组vector<vector<int>> dp(prices.size(), vector<int>(3));// 2.初始化dp[0][0] = -prices[0];dp[0][1] = 0;dp[0][2] = 0;// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];}// 4.返回值return max(dp.back()[1], dp.back()[2]);
}
  1. 买卖股票的最佳时机含手续费
状态表示: dp[i][0]: 表示第i天结束后,处于买入状态时的最大利润dp[i][1]: 表示第i天结束后,处于可交易状态时的最大利润
状态转移方程:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);
int maxProfit(vector<int>& prices, int fee)
{// 1.dp数组vector<vector<int>> dp(prices.size(), vector<int>(2));// 2.初始化dp[0][0] = -prices[0];dp[0][1] = 0;// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);}// 4.返回值return dp.back()[1];
}
  1. 买卖股票的最佳时机 III
状态表示:dp[i]: 表示第i天结束之后,此时获得的最大利润f[i][j]: 表示第i天结束之后,此时已完成j次交易,且处于“持有”股票状态的最大利润g[i][j]: 表示第i天结束之后,此时已完成j次交易,且处于“未持有”股票状态的最大利润
状态转移方程:f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);
int maxProfit(vector<int>& prices)
{// 1.dp数组vector<vector<int>> f(prices.size(), vector<int>(3, -0x3f3f3f3f));vector<vector<int>> g(prices.size(), vector<int>(3, -0x3f3f3f3f));// 2.初始化f[0][0] = -prices[0];g[0][0] = 0;// 3.状态转移方程for(int i = 1; i < prices.size(); ++i){for(int j = 0; j < 3; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);if(j - 1 >= 0)g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);elseg[i][j] = g[i-1][j];}}// 4.返回值int ret = g.back()[0];for(int i = 1; i < 3; ++i){if(g.back()[i] > ret) ret = g.back()[i];}return ret;
}
  1. 买卖股票的最佳时机 IV
int maxProfit(int k, vector<int>& prices)
{// 0.细节处理k = min(k, (int)prices.size() / 2);// 1.dp数组vector<vector<int>> f(prices.size(), vector<int>(k + 1, -0x3f3f3f3f));vector<vector<int>> g(prices.size(), vector<int>(k + 1, -0x3f3f3f3f));// 2.初始化f[0][0] = -prices[0];g[0][0] = 0;// 3.状态转移方程for(int i = 1; i < prices.size(); ++i){for(int j = 0; j < k + 1; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);if(j - 1 >= 0)g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);elseg[i][j] = g[i-1][j];}}// 4.返回值int ret = g.back()[0];for(int i = 1; i < k + 1; ++i){if(g.back()[i] > ret) ret = g.back()[i];}return ret;
}

这篇关于【C++刷题】优选算法——动态规划第二辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835161

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3