[python]bar_chart_race绘制动态条形图

2024-03-22 08:28

本文主要是介绍[python]bar_chart_race绘制动态条形图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在 B 站上看到了一个宝藏 up 主,名叫 "Jannchie见齐",专门做动态条形图相关的数据可视化。

可以看到做出的效果还是很不错的,但工具使用的是 JS,不是 Python,于是尝试搜索了一下,看看 Python 有没有相关的库能够做出动态条形图相关的效果。幸运的是还真有相关的库,叫 bar_chart_race,那么下面就来看看相关的用法。

老规矩,使用之前先安装,直接 pip install bar-chart-race 即可。

使用方法

下面来看看使用方法。

import pandas as pd
import bar_chart_race as bcr# 如果出现SSL错误,则全局取消证书验证
# import ssl
# ssl._create_default_https_context = ssl._create_unverified_context# 获取数据
df = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 生成 GIF 图像
bcr.bar_chart_race(df, "covid19_horiz.gif")

我们看到代码非常简单,就是将数据转成 pandas 的 DataFrame,然后调用 bar_chart_race 即可生成 GIF 图像。

整体还是不错的,然后我们重点来看一下数据:

其中表头就是 GIF 图表中 Y 轴的部分,但需要注意的是,我们的图表是随时间不断变化的,所以我们在生成 DataFrame 的时候必须将 date 字段设置为索引。然后数据随着时间不断变化,并且条形图之间会根据数据的大小进行排序。

当然了,以上只是默认生成的,bar_chart_race 里面还有很多的参数,我们来看一下。

动态条形图变动态柱状图
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
bcr.bar_chart_race(df, "covid19_horiz.gif", orientation='v')

我们看到为了避免文字发生重叠,自动倾斜了,所以还是比较人性化的。

排序方式,默认为降序
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置排序方式
bcr.bar_chart_race(df, "covid19_horiz.gif", sort='asc')

条目数限制
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置最多能显示的条目数,这里最多显示 6 条
bcr.bar_chart_race(df, 'covid19_horiz.gif', n_bars=6)

设置固定类目
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 选取如下 5 个国家的数据
bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_order=['Iran', 'USA', 'Italy', 'Spain', 'Belgium'])

固定数值轴,使其不发生动态变化
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置数值的最大值,固定数值轴
bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_max=True)

设置图像帧数,默认 10 帧
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 图像帧数:数值越小,越不流畅;越大,越流畅
bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=3)

可以看到,动图变得不流畅了。

设置帧率,单位时间默认为 500ms
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置帧率为 200ms,总共 20 帧
bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=20, period_length=200)

设置每帧增加的标签时间,默认为 False
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
bcr.bar_chart_race(df, 'covid19_horiz.gif', interpolate_period=True)

绘图属性设置
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# figsize:设置画布大小,默认 (6, 3.5)
# dpi:图像分辨率,默认 144
# label_bars:显示柱状图的数值信息,默认为 True;指定为 False 则不显示;指定为字典,则自定义显示属性
# period_label:显示时间标签信息,默认为 True;指定为 False 则不显示;指定为字典,则自定义显示属性
# period_fmt:设置日期格式
# title:图表标题
# title_size:标题字体大小
# shared_fontdict:全局字体属性,例如 {'family': 'Helvetica', 'weight': 'bold', 'color': 'rebeccapurple'}
bcr.bar_chart_race(df, 'covid19_horiz.gif', figsize=(5, 3), dpi=100, label_bars=False,period_label={'x': .99, 'y': .1, 'ha': 'right', 'color': 'red'},title='COVID-19 Deaths by Country')

条形图属性,可以设置透明度,边框等
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# bar_kwargs:条形图属性
bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_kwargs={'alpha': .2, 'ec': 'black', 'lw': 3})

添加动态文本
import pandas as pd
import bar_chart_race as bcr
import matplotlib.pyplot as plt# 设置字体,否则无法显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows
# plt.rcParams['font.sans-serif'] = ['Hiragino Sans GB'] # Mac
plt.rcParams['axes.unicode_minus'] = Falsedf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])def summary(values, ranks):# 动态文本的内容"""values 为 df 的每一行(Series),例如Belgium            1143.0China              3326.0France             6520.0Germany            1275.0Iran               3294.0Italy             14681.0Netherlands        1490.0Spain             11198.0USA                7418.0United Kingdom     3611.0Name: 2020-04-03, dtype: float64ranks 则是针对 values 的值进行了排名,例如Belgium            1.0China              5.0France             7.0Germany            2.0Iran               4.0Italy             10.0Netherlands        3.0Spain              9.0USA                8.0United Kingdom     6.0Name: 2020-04-03, dtype: float64"""all_people = int(values.sum())ranks_country = ranks.sort_values().indexs = f'总死亡人数:{all_people},死亡人数最多的国家:{ranks_country[-1]},死亡人数最少的国家:{ranks_country[0]}'# 设置文本位置、数值、大小、颜色等return {'x': .99, 'y': .05, 's': s, 'ha': 'right', 'size': 8}
# 添加文本
bcr.bar_chart_race(df, 'covid19_horiz.gif', period_summary_func=summary)

添加垂直条
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置垂直条数值,分位数
def func(values, ranks):return values.quantile(.9)
# 添加垂直条
bcr.bar_chart_race(df, 'covid19_horiz.gif', perpendicular_bar_func=func)

设置柱状图颜色
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap="plotly3")

那么颜色都有哪些呢?

from pprint import pprint
from bar_chart_race._colormaps import colormaps
pprint(list(colormaps.keys()))
"""
['dark12','dark12_r','plotly3','viridis','cividis','inferno','magma','plasma','blackbody','bluered','electric',........
"""

柱状图颜色不重复
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap="plotly3", filter_column_colors=True)

以上就是绝大部分配置,当然源码中注释写的也比较详细,可以点进去看一下。

这篇关于[python]bar_chart_race绘制动态条形图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834933

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核