改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

本文主要是介绍改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其思想来源于鸟群寻食和鱼群捕食等自然现象。PSO算法通过模拟群体智能的行为,以一种启发式的方式寻找最优解,因此具有全局搜索能力强、收敛速度快等优点。本文将介绍标准粒子群算法的基本流程、算法实现和应用场景等方面。

完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

一、算法实现

1.1 标准的粒子群算法

文献[1]在更新粒子的速度和位置时,需要考虑每个粒子自身的经验和整个群体的经验。具体的更新公式如下:

v i , j = w v i , j + c 1 r 1 ( p b e s t i , j − x i , j ) + c 2 r 2 ( g b e s t j − x i , j ) (1) v_{i,j}=wv_{i,j}+c_1r_1(pbest_{i,j}-x_{i,j})+c_2r_2(gbest_{j}-x_{i,j}) \tag{1} vi,j=wvi,j+c1r1(pbesti,jxi,j)+c2r2(gbestjxi,j)(1)

x i , j = x i , j + v i , j (2) x_{i,j}=x_{i,j}+v_{i,j} \tag{2} xi,j=xi,j+vi,j(2)

其中, v i , j v_{i,j} vi,j表示粒子 i i i在第 j j j维的速度, x i , j x_{i,j} xi,j表示粒子 i i i在第 j j j维的位置, p b e s t i , j pbest_{i,j} pbesti,j表示粒子 i i i在第 j j j维的个体最优解, g b e s t j gbest_{j} gbestj表示整个群体在第 j j j维的全局最优解, w w w表示惯性权重, c 1 c_1 c1 c 2 c_2 c2分别表示个体学习因子和社会学习因子, r 1 r_1 r1 r 2 r_2 r2分别表示0到1之间的随机数。

1.2、粒子速度更新公式的改进

粒子速度更新公式的改进
文献【2】提出一种均值粒子群优化(MeanPSO)算法,即利用个体最优和群体最优的线性组合 ( p h e s t i j + g b e s t j 2 ) ({\frac{{\mathrm{phest}}_{i j}+{\mathrm{gbest}}_{j}}{2}}) (2phestij+gbestj) ( p h e s t i j − g b e s t j 2 ) ({\frac{{\mathrm{phest}}_{i j}-{\mathrm{gbest}}_{j}}{2}}) (2phestijgbestj)分别替换
MeanPSO算法中粒子搜索区间更广,使得算法在进化前期有更大可能搜索到全局最优解。

具体对(1)式的更新公式如下:

v i j ( t + 1 ) = w v i j ( t ) + c 1 r 1 ( p h e s t i j − g b e s t j 2 − x i j ( t ) ) + c 2 r 2 ( p b e s t i − g b e s t d 2 − x i j ( t ) ) (3) v_{ij}(t+1)=w v_{i j}(t)+c_{1}r_{1}\left({\frac{{\mathrm{phest}}_{i j}-{\mathrm{gbest}}_{j}}{2}}\,-x_{i j}(t)\right)+c_{2}r_{2}\left({\frac{{\mathrm{pbest}}_{i }-{\mathrm{gbest}}_{d}}{2}}\,-x_{i j}(t)\right) \tag{3} vij(t+1)=wvij(t)+c1r1(2phestijgbestjxij(t))+c2r2(2pbestigbestdxij(t))(3)

MeanPSO算法中粒子搜索区间更广,使得算法在进化前期有更大可能搜索到全局最优解.

二、仿真实验及结果分析

为验证文献[3]所提算法MPSO有效性,将文献[3]MPSO算法与粒子群优化(PSO)算法【1】、均值粒子群优化(MeanPSO)算法【2】、一种基于自适应策略的改进粒子群优化(MPSO)算法【3】、改进粒子群算法(IPSO)【4】,一种多群自适应协同粒子群优化算法(MSCPSO)算法[5]、社会学习粒子群优化(SL-PSO)算法【6】、一种动态调整惯性权重的混合粒子群算法【7】,一种结合自适应惯性权重的混合粒子群算法【8】进行对比测试,使用Matlab软件进行仿真,不同PSO算法设置相同种群规模N = 30、最大迭代次数 T max ⁡ = 500 T_{\max}=500 Tmax=500和变量维数D=30。

三、完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm
在这里插入图片描述
在这里插入图片描述

三、完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

【1】KENNEDY J,EBERHART R C.Particle swarm optimizationC//Proceedings of the lEEE International Conference on Neural Networks,1995:1942-1948
【2】 Deep K, Bansal J C. Mean particle swarm optimisation for function optimisation[J]. International Journal of Computational Intelligence Studies, 2009, 1(1): 72-92.
【3】Hao Liu, Xu-Wei Zhang , Liang-Ping Tu. A modified particle swarm optimization using adaptive strategy[J]. Expert Systems With Applications, 2020, 152: 113353.
【4】Y. Shi, R. Eberhart. A modified particle swarm optimizer[C]. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 1998, 4: 69-73.
【5】Jiuzhong Zhang, Xueming Ding.A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm Optimization[J].Engineering Applications of Artificial Intelligence,2021,24(6),958-967.
【6】Ran Cheng, Yaochu Jin. A social learning particle swarm optimization algorithm for scalable optimization[J].Information Sciences, 291,43-60.
【7】胡堂清,张旭秀,曹晓月.一种动态调整惯性权重的混合粒子群算法[J].电光与控制,2020,27(06):16-21.
【8】于桂芹,李刘东,袁永峰.一种结合自适应惯性权重的混合粒子群算法[J].哈尔滨理工大学学报,2016,21(03):49-53.

这篇关于改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831927

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索