粒子群优化算法||粒子群算法||Improved particle swarm optimization algorithm求解函数值

本文主要是介绍粒子群优化算法||粒子群算法||Improved particle swarm optimization algorithm求解函数值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其思想来源于鸟群寻食和鱼群捕食等自然现象。PSO算法通过模拟群体智能的行为,以一种启发式的方式寻找最优解,因此具有全局搜索能力强、收敛速度快等优点。本文将介绍标准粒子群算法的基本流程、算法实现和应用场景等方面。

一、算法实现

1.1 更新粒子的速度和位置

在更新粒子的速度和位置时,需要考虑每个粒子自身的经验和整个群体的经验。具体的更新公式如下:

v i , j = w v i , j + c 1 r 1 ( p b e s t i , j − x i , j ) + c 2 r 2 ( g b e s t j − x i , j ) v_{i,j}=wv_{i,j}+c_1r_1(pbest_{i,j}-x_{i,j})+c_2r_2(gbest_{j}-x_{i,j}) vi,j=wvi,j+c1r1(pbesti,jxi,j)+c2r2(gbestjxi,j)

x i , j = x i , j + v i , j x_{i,j}=x_{i,j}+v_{i,j} xi,j=xi,j+vi,j

其中, v i , j v_{i,j} vi,j表示粒子 i i i在第 j j j维的速度, x i , j x_{i,j} xi,j表示粒子 i i i在第 j j j维的位置, p b e s t i , j pbest_{i,j} pbesti,j表示粒子 i i i在第 j j j维的个体最优解, g b e s t j gbest_{j} gbestj表示整个群体在第 j j j维的全局最优解, w w w表示惯性权重, c 1 c_1 c1 c 2 c_2 c2分别表示个体学习因子和社会学习因子, r 1 r_1 r1 r 2 r_2 r2分别表示0到1之间的随机数。

二、应用场景

PSO算法可以应用于多种优化问题,如函数优化、组合优化、机器学习等。其中,函数优化是PSO算法最常见的应用场景之一。例如,可以利用PSO算法求解函数 f ( x ) = x 2 f(x)=x^2 f(x)=x2的最小值,其代码实现如下:

import random# 初始化参数
max_iter = 100  # 最大迭代次数
pop_size = 20  # 粒子群大小
dim_size = 1  # 解向量维度
c1 = 2  # 个体学习因子
c2 = 2  # 社会学习因子
w = 0.8  # 惯性权重
x_min = -10  # 解向量最小值
x_max = 10  # 解向量最大值# 初始化粒子群
particles = []
for i in range(pop_size):x = [random.uniform(x_min, x_max) for j in range(dim_size)]v = [random.uniform(x_min, x_max) for j in range(dim_size)]particles.append({'x': x, 'v': v, 'pbest': x, 'pbest_score': float('inf')})# 迭代优化
gbest = particles[0]['x']
gbest_score = float('inf')
for t in range(max_iter):for i in range(pop_size):# 计算适应度值score = particles[i]['x'][0] ** 2if score < particles[i]['pbest_score']:particles[i]['pbest'] = particles[i]['x']particles[i]['pbest_score'] = scoreif score < gbest_score:gbest = particles[i]['x']gbest_score = score# 更新速度和位置for j in range(dim_size):particles[i]['v'][j] = w * particles[i]['v'][j] + c1 * random.random() * (particles[i]['pbest'][j] - particles[i]['x'][j]) + c2 * random.random() * (gbest[j] - particles[i]['x'][j])particles[i]['x'][j] = particles[i]['x'][j] + particles[i]['v'][j]# 输出最优解
print('x:', gbest)
print('f(x):', gbest_score)

PSO算法也可以应用于组合优化问题,例如旅行商问题(Traveling Salesman Problem,TSP)。在TSP中,粒子表示一条路径,位置表示路径上的城市顺序,速度表示路径的变化量。通过适应度函数,可以评估路径的长度,从而寻找最优路径。PSO算法还可以应用于机器学习领域,如神经网络的权值优化等。

这篇关于粒子群优化算法||粒子群算法||Improved particle swarm optimization algorithm求解函数值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831518

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl