深度学习Week5-心脏病预测(RNN)

2024-03-21 01:10

本文主要是介绍深度学习Week5-心脏病预测(RNN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍨 本文为[🔗365天深度学习训练营]中的学习记录博客
🍦 参考文章:[🔗深度学习100例-循环神经网络(RNN)心脏病预测]
🍖 原作者:[K同学啊|接辅导、项目定制]

  • 难度:新手入门⭐

🍺要求:

  1. 本地读取并加载数据。(✔)
  2. 了解循环神经网络(RNN)的构建过程(✔)
  3. 测试集accuracy到达87%(✔)

🍻拔高:

  1. 测试集accuracy到达89%(X)

环境:

  • 语言环境:Python3.8
  • 编译器:pycharm社区版
  • 深度学习框架:TensorFlow2.4.1
  • 数据地址:🔗百度网盘

总体流程

一、前期准备

1.设置GPU

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0], "GPU")print(gpus)

这里遇到了bug,一是h5py版本出错了,卸了重装就行,二是缺少CUDNN64_8.DLL文件,这里推荐一个下载dll文件的网址,不收费可中文,非常好用。

cudnn64_8.dll 搜索结果 | DLL‑files.com

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

2. 导入数据

数据是csv表格,里面有各种参数,我们通过对数据的处理训练,实现预测功能

数据介绍:

age:1) 年龄

sex:2) 性别

cp:3) 胸痛类型 (4 values)

trestbps:4) 静息血压

chol:5) 血清胆甾醇 (mg/dl

fbs:6) 空腹血糖 > 120 mg/dl

restecg:7) 静息心电图结果 (值 0,1 ,2)

thalach:8) 达到的最大心率

exang:9) 运动诱发的心绞痛

oldpeak:10)  相对于静止状态,运动引起的ST段压低

slope:11) 运动峰值 ST 段的斜率

ca:12) 荧光透视着色的主要血管数量 (0-3)

thal:13) 0 = 正常;1 = 固定缺陷;2 = 可逆转的缺陷

target:14) 0 = 心脏病发作的几率较小 1 = 心脏病发作的几率更大

把数据文件放在和代码.py同一个目录下。

import pandas as pd
import numpy as npdf = pd.read_csv("heart.csv")
print(df)

 3.(次要)检查数据

由于数据可能有误输入为0的,可以检查一下有没有空值,大多情况下可以跳过这一步

print(df.isnull().sum())

age         0
sex         0
cp          0
trestbps    0
chol        0
fbs         0
restecg     0
thalach     0
exang       0
oldpeak     0
slope       0
ca          0
thal        0
target      0
dtype: int64

每组数据空值个数都是0,数据正常。

二、数据预处理

1. 划分训练集与测试集

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_splitX = df.iloc[:,:-1] #iloc函数:对数据进行位置索引,从而在数据表中提取出相应的数据。
y = df.iloc[:,-1]X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state = 1)print(X_train.shape, y_train.shape)

(272, 13) (272,)

2. 标准化

# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc      = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test  = sc.transform(X_test)X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_test  = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)

三、构建RNN模型

函数原型

tf.keras.layers.SimpleRNN(units,activation='tanh',use_bias=True,kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',bias_initializer='zeros',kernel_regularizer=None,recurrent_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,recurrent_constraint=None,
bias_constraint=None,dropout=0.0,recurrent_dropout=0.0,return_sequences=False,return_state=False,
go_backwards=False,stateful=False,unroll=False,**kwargs)

关键参数说明:

units: 正整数,输出空间的维度。

activation: 要使用的激活函数。 默认:双曲正切(tanh)。 如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。

use_bias: 布尔值,该层是否使用偏置向量。

kernel_initializer: kernel 权值矩阵的初始化器, 用于输入的线性转换 (详见 initializers)。

recurrent_initializer: recurrent_kernel 权值矩阵 的初始化器,用于循环层状态的线性转换 (详见 initializers)。

bias_initializer:偏置向量的初始化器 (详见initializers).

dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于输入的线性转换。

import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,LSTM,SimpleRNNmodel = Sequential()
model.add(SimpleRNN(200, input_shape= (13,1), activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()

 四、编译模型

设置学习率啥的 和CNN一样(吧)

opt = tf.keras.optimizers.Adam(learning_rate=1e-4)model.compile(loss='binary_crossentropy',optimizer=opt,metrics="accuracy")

 五、训练模型

因为都是数据,训练比图片数据快不少,100轮起步

epochs = 100history = model.fit(X_train, y_train, epochs=epochs, batch_size=128, validation_data=(X_test, y_test),verbose=1)


六、模型评估

import matplotlib.pyplot as pltacc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 R1周的这个数据量有点少,这个抖动是正常的,可以通过扩充数据集来解决。

最后输出一下准确率(其实看第一百轮准确率即可):

scores = model.evaluate(X_test, y_test, verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

accuracy: 90.32%

这准确率太不稳定了,我训练了两次,一次84%,这次90%...

*拔高

结合week4猴痘识别的经验,先把训练的history中的batch_size降低到32

效果相当的不好,改回去准备从学习率入手

然而学习率无论是调大还是调小,准确率都稳定在87%左右,甚至调的幅度太大准确率会有明显下降...

可能是数据集太小的缘故,以后发现优化方法再和大家分享

这篇关于深度学习Week5-心脏病预测(RNN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831332

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操