模型部署——RKNN模型量化精度分析及混合量化提高精度

2024-03-20 18:44

本文主要是介绍模型部署——RKNN模型量化精度分析及混合量化提高精度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


                        模型部署——RKNN模型量化精度分析及混合量化提高精度(附代码)-CSDN博客

3.1 量化精度分析流程
计算不同情况下,同一层网络输入值的余弦距离,来近似的查看每一层精度损失的情况。具体量化精度分析的流程如下:

3.2 量化精度分析accuracy_analysis接口
量化精度分析调用accuracy_analysis接口,推理并产生快照,也就是dump出每一层的tensor数据。会dump出包括fp32和quant两种数据类型的快照,用于计算量化误差。

注:

该接口只能在 build或 hybrid_quantization_step2之后调用,并且原始模型应该为非量化的模型,否则会调用失败。

该接口使用的量化方式与config_中指定的一致。

3.3.1 参数修改

量化精度分析代码对应于源码包中accuracy_analysis.py脚本,需要修改的地方如下:

from rknn.api import RKNN
import cv2
import numpy as npif __name__=='__main__':rknn = RKNN(verbose=True)             # 打印详细日志# 调用config接口设置模型的预处理、量化方法等参数rknn.config(mean_values = [[123.675,116.28,103.53]],           # mean_values表示预处理要减去的均值化参数std_values = [[58.395,58.395,58.395]],             # std_values 表示预处理要除的标准化参数target_platform = "rk3588"                         # target_platform表示生成的RKNN模型要运行在哪个RKNPU平台上。通常有rk3588,rk3566,rv1126等)# 添加load_xxx接口,进行常用深度学习模型的导入           将深度学习模型导入rknn.load_pytorch(model = "./resnet18.pt",input_size_list = [[1, 3,224,224]])# 使用build接口来构建RKNN模型rknn.build(do_quantization = True,dataset = "dataset.txt",rknn_batch_size = -1)# 调用export_rknn接口导出RKNN模型rknn.export_rknn(export_path="resnet18.rknn")# 使用accuracy_analysis 接口进行模型量化精度分析rknn.accuracy_analysis(inputs = ["space_shuttle_224.jpg"],               # inputs 表示进行推理的图像output_dir = 'snapshot',                          # 表示精度分析的输出目录target = None,                                    # 表示目标硬件平台device_id = None,                                 # 表示设备的编号)rknn.release()

4.2.2.2 代码

具体代码对应于源码包中hrhrid_quantization文件夹中的setp1.py脚本,具体代码如下:

from rknn.api import RKNN
import cv2
import numpy as npif __name__=='__main__':rknn = RKNN(verbose=True)             # 打印详细日志# 调用config接口设置模型的预处理、量化方法等参数rknn.config(mean_values = [[123.675,116.28,103.53]],           # mean_values表示预处理要减去的均值化参数std_values = [[58.395,58.395,58.395]],             # std_values 表示预处理要除的标准化参数target_platform = "rk3588"                         # target_platform表示生成的RKNN模型要运行在哪个RKNPU平台上。通常有rk3588,rk3566,rv1126等)# 添加load_xxx接口,进行常用深度学习模型的导入           将深度学习模型导入rknn.load_pytorch(model = "./resnet18.pt",input_size_list = [[1, 3,224,224]])# 使用hybrid_quantization_step 接口进行混合量化第一步rknn.hybrid_quantization_step1(dataset="dataset.txt",  # 表示模型量化所需要的数据集rknn_batch_size=-1,  # 表示自动调整模型输入batch数量proposal=False,  # 设置为True,可以自动产生混合量化的配置建议,比较耗时# proposal= True,  # 设置为True,可以自动产生混合量化的配置建议,比较耗时proposal_dataset_size=1,  # 第三步骤所用的图片)rknn.release()

4.2.2.5 添加量化层

从上面可以看出25层,33层,43层,51层等损失较大,这里举例选取其中input.25层,将该层从量化层转为非量化层,在resnet18.quantization.cfg文件夹添加,如下:

4.3.3 代码
代码对应源码包中的step2.py,具体代码如下:

from rknn.api import RKNNif __name__=="__main__":rknn = RKNN(verbose=True)# 调用hyborid_quantization_step2接口进行混合量化的第二个步骤rknn.hybrid_quantization_step2(model_input = "resnet18.model",          # 表示第一步生成的模型文件data_input= "resnet18.data",             # 表示第一步生成的配置文件model_quantization_cfg="resnet18.quantization.cfg"  # 表示第一步生成的量化配置文件)# 调用量化精度分析接口(评估RKNN模型)rknn.accuracy_analysis(inputs=["space_shuttle_224.jpg"],output_dir="./snapshot",target = None)# 调用RKNN模型导出RKNN模型rknn.export_rknn(export_path="./resnet18.rknn")rknn.release()

这篇关于模型部署——RKNN模型量化精度分析及混合量化提高精度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830398

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.