Redis系列学习文章分享---第十篇(Redis快速入门之附近商铺+用户签到+UV统计)

本文主要是介绍Redis系列学习文章分享---第十篇(Redis快速入门之附近商铺+用户签到+UV统计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis的实战篇-附近商铺+用户签到+UV统计

目录

  • Redis的实战篇-附近商铺+用户签到+UV统计
    • 目录
    • 1. 附近商铺-GE0数据结构的基本用法
      • 1.1 概述
      • 1.2 示例代码
    • 2. 附近商铺-导入店铺数据到 GEO
      • 2.1 概述
      • 2.2 示例代码
    • 3. 附近商铺-实现附近商户功能
      • 3.1 概述
      • 3.2 示例代码
    • 4. 用户签到-BitMap功能演示
      • 4.1 概述
      • 4.2 示例代码
    • 5. 用户签到-实现签到功能
      • 5.1 概述
      • 5.2 示例代码
    • 6. 用户签到-统计连续签到
      • 6.1 概述
      • 6.2 示例代码
    • 7. UV统计-HyperLogLog的用法
      • 7.1 概述
      • 7.2 示例代码
    • 8. UV统计-测试百万数据的统计
      • 8.1 概述
      • 8.2 示例代码

目录

  1. 附近商铺-GE0数据结构的基本用法
  2. 附近商铺-导入店铺数据到 GEO
  3. 附近商铺-实现附近商户功能
  4. 用户签到-BitMap功能演示
  5. 用户签到-实现签到功能
  6. 用户签到-统计连续签到
  7. UV统计-HyperLogLog的用法
  8. UV统计-测试百万数据的统计

1. 附近商铺-GE0数据结构的基本用法

1.1 概述

GE0数据结构是Redis提供的用于地理位置信息存储和查询的数据结构,可以实现附近商铺功能。

1.2 示例代码

Jedis jedis = new Jedis("localhost", 6379);// 添加店铺位置
double longitude = 116.404;
double latitude = 39.915;
String shopId = "shop123";
jedis.geoadd("shops", longitude, latitude, shopId);// 查询附近的店铺
List<GeoRadiusResponse> nearbyShops = jedis.georadius("shops", longitude, latitude, 10, GeoUnit.KM);
for (GeoRadiusResponse shop : nearbyShops) {System.out.println("Shop ID: " + shop.getMemberByString() + ", Distance: " + shop.getDistance());
}

2. 附近商铺-导入店铺数据到 GEO

2.1 概述

将店铺的位置信息导入到GEO数据结构中,以便实现附近商户功能。

2.2 示例代码

// 读取店铺数据
List<Shop> shops = readShopsFromDatabase();// 导入店铺数据到 GEO
Jedis jedis = new Jedis("localhost", 6379);
for (Shop shop : shops) {jedis.geoadd("shops", shop.getLongitude(), shop.getLatitude(), shop.getId());
}

3. 附近商铺-实现附近商户功能

3.1 概述

通过GEO数据结构,实现查找用户附近的商户的功能。

3.2 示例代码

// 查询附近的商户
Jedis jedis = new Jedis("localhost", 6379);
double longitude = user.getLongitude();
double latitude = user.getLatitude();
List<GeoRadiusResponse> nearbyShops = jedis.georadius("shops", longitude, latitude, 10, GeoUnit.KM);
for (GeoRadiusResponse shop : nearbyShops) {System.out.println("Shop ID: " + shop.getMemberByString() + ", Distance: " + shop.getDistance());
}

4. 用户签到-BitMap功能演示

4.1 概述

BitMap是Redis提供的用于位操作的数据结构,可以用于记录用户签到情况。

4.2 示例代码

// 用户签到
Jedis jedis = new Jedis("localhost", 6379);
String userId = "user123";
String date = "2022-01-01";
jedis.setbit("checkin:" + userId, getDateOffset(date), 1);

5. 用户签到-实现签到功能

5.1 概述

实现用户签到功能,记录用户每天的签到情况。

5.2 示例代码

// 用户签到
Jedis jedis = new Jedis("localhost", 6379);
String userId = "user123";
String date = "2022-01-01";
jedis.setbit("checkin:" + userId, getDateOffset(date), 1);

6. 用户签到-统计连续签到

6.1 概述

统计用户的连续签到天数,可以通过BitMap的位操作实现。

6.2 示例代码

// 统计连续签到天数
Jedis jedis = new Jedis("localhost", 6379);
String userId = "user123";
long consecutiveDays = jedis.bitcount("checkin:" + userId);
System.out.println("连续签到天数: " + consecutiveDays);

7. UV统计-HyperLogLog的用法

7.1 概述

HyperLogLog是一种基数估算算法,可以用于统计UV(独立访客)数量。

7.2 示例代码

// 统计UV
Jedis jedis = new Jedis("localhost", 6379);
String pageViewKey = "page:home:view";
for (int i = 0; i < 1000; i++) {jedis.pfadd(pageViewKey, "user" + i);
}
long uv = jedis.pfcount(pageViewKey);
System.out.println("UV数量: " + uv);

8. UV统计-测试百万数据的统计

8.1 概述

测试HyperLogLog算法在大数据量下的统计性能。

8.2 示例代码

// 测试百万数据的统计
Jedis jedis = new Jedis("localhost", 6379);
String pageViewKey = "page:home:view";
Random random = new Random();
for (int i = 0; i < 1000000; i++) {jedis.pfadd(pageViewKey, "user" + random.nextInt(1000000));
}
long uv = jedis.pfcount(pageViewKey);
System.out.println("UV数量: " + uv);

感谢您阅读本篇Redis实战篇-附近商铺+用户签到+UV统计的技术博客!如果您有任何问题或建议

这篇关于Redis系列学习文章分享---第十篇(Redis快速入门之附近商铺+用户签到+UV统计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829890

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧