Redis系列学习文章分享---第十篇(Redis快速入门之附近商铺+用户签到+UV统计)

本文主要是介绍Redis系列学习文章分享---第十篇(Redis快速入门之附近商铺+用户签到+UV统计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis的实战篇-附近商铺+用户签到+UV统计

目录

  • Redis的实战篇-附近商铺+用户签到+UV统计
    • 目录
    • 1. 附近商铺-GE0数据结构的基本用法
      • 1.1 概述
      • 1.2 示例代码
    • 2. 附近商铺-导入店铺数据到 GEO
      • 2.1 概述
      • 2.2 示例代码
    • 3. 附近商铺-实现附近商户功能
      • 3.1 概述
      • 3.2 示例代码
    • 4. 用户签到-BitMap功能演示
      • 4.1 概述
      • 4.2 示例代码
    • 5. 用户签到-实现签到功能
      • 5.1 概述
      • 5.2 示例代码
    • 6. 用户签到-统计连续签到
      • 6.1 概述
      • 6.2 示例代码
    • 7. UV统计-HyperLogLog的用法
      • 7.1 概述
      • 7.2 示例代码
    • 8. UV统计-测试百万数据的统计
      • 8.1 概述
      • 8.2 示例代码

目录

  1. 附近商铺-GE0数据结构的基本用法
  2. 附近商铺-导入店铺数据到 GEO
  3. 附近商铺-实现附近商户功能
  4. 用户签到-BitMap功能演示
  5. 用户签到-实现签到功能
  6. 用户签到-统计连续签到
  7. UV统计-HyperLogLog的用法
  8. UV统计-测试百万数据的统计

1. 附近商铺-GE0数据结构的基本用法

1.1 概述

GE0数据结构是Redis提供的用于地理位置信息存储和查询的数据结构,可以实现附近商铺功能。

1.2 示例代码

Jedis jedis = new Jedis("localhost", 6379);// 添加店铺位置
double longitude = 116.404;
double latitude = 39.915;
String shopId = "shop123";
jedis.geoadd("shops", longitude, latitude, shopId);// 查询附近的店铺
List<GeoRadiusResponse> nearbyShops = jedis.georadius("shops", longitude, latitude, 10, GeoUnit.KM);
for (GeoRadiusResponse shop : nearbyShops) {System.out.println("Shop ID: " + shop.getMemberByString() + ", Distance: " + shop.getDistance());
}

2. 附近商铺-导入店铺数据到 GEO

2.1 概述

将店铺的位置信息导入到GEO数据结构中,以便实现附近商户功能。

2.2 示例代码

// 读取店铺数据
List<Shop> shops = readShopsFromDatabase();// 导入店铺数据到 GEO
Jedis jedis = new Jedis("localhost", 6379);
for (Shop shop : shops) {jedis.geoadd("shops", shop.getLongitude(), shop.getLatitude(), shop.getId());
}

3. 附近商铺-实现附近商户功能

3.1 概述

通过GEO数据结构,实现查找用户附近的商户的功能。

3.2 示例代码

// 查询附近的商户
Jedis jedis = new Jedis("localhost", 6379);
double longitude = user.getLongitude();
double latitude = user.getLatitude();
List<GeoRadiusResponse> nearbyShops = jedis.georadius("shops", longitude, latitude, 10, GeoUnit.KM);
for (GeoRadiusResponse shop : nearbyShops) {System.out.println("Shop ID: " + shop.getMemberByString() + ", Distance: " + shop.getDistance());
}

4. 用户签到-BitMap功能演示

4.1 概述

BitMap是Redis提供的用于位操作的数据结构,可以用于记录用户签到情况。

4.2 示例代码

// 用户签到
Jedis jedis = new Jedis("localhost", 6379);
String userId = "user123";
String date = "2022-01-01";
jedis.setbit("checkin:" + userId, getDateOffset(date), 1);

5. 用户签到-实现签到功能

5.1 概述

实现用户签到功能,记录用户每天的签到情况。

5.2 示例代码

// 用户签到
Jedis jedis = new Jedis("localhost", 6379);
String userId = "user123";
String date = "2022-01-01";
jedis.setbit("checkin:" + userId, getDateOffset(date), 1);

6. 用户签到-统计连续签到

6.1 概述

统计用户的连续签到天数,可以通过BitMap的位操作实现。

6.2 示例代码

// 统计连续签到天数
Jedis jedis = new Jedis("localhost", 6379);
String userId = "user123";
long consecutiveDays = jedis.bitcount("checkin:" + userId);
System.out.println("连续签到天数: " + consecutiveDays);

7. UV统计-HyperLogLog的用法

7.1 概述

HyperLogLog是一种基数估算算法,可以用于统计UV(独立访客)数量。

7.2 示例代码

// 统计UV
Jedis jedis = new Jedis("localhost", 6379);
String pageViewKey = "page:home:view";
for (int i = 0; i < 1000; i++) {jedis.pfadd(pageViewKey, "user" + i);
}
long uv = jedis.pfcount(pageViewKey);
System.out.println("UV数量: " + uv);

8. UV统计-测试百万数据的统计

8.1 概述

测试HyperLogLog算法在大数据量下的统计性能。

8.2 示例代码

// 测试百万数据的统计
Jedis jedis = new Jedis("localhost", 6379);
String pageViewKey = "page:home:view";
Random random = new Random();
for (int i = 0; i < 1000000; i++) {jedis.pfadd(pageViewKey, "user" + random.nextInt(1000000));
}
long uv = jedis.pfcount(pageViewKey);
System.out.println("UV数量: " + uv);

感谢您阅读本篇Redis实战篇-附近商铺+用户签到+UV统计的技术博客!如果您有任何问题或建议

这篇关于Redis系列学习文章分享---第十篇(Redis快速入门之附近商铺+用户签到+UV统计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829890

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github