python timeit-程序测试(汇总-全) tcy

2024-03-20 10:08

本文主要是介绍python timeit-程序测试(汇总-全) tcy,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

timeit-程序测试    2018/9/6
    相对timeit 细粒度,profile 和 pstats 模块提供针对更大代码块的时间度量工具
    简单的程序语句测试,包含输入参数。一般取测试结果的最小值作为结果。
-------------------------------------------------------------------------------

1.简单测试程序的运行时间
    在一段程序的前后都用上time.time(),然后进行相减

 

-------------------------------------------------------------------------------
2.timeit
2.1.函数:
    timeit.timeit(stmt =
'pass',setup ='pass',timer = <default timer>,
                    number =
1000000,globals = None
        用途:
            Timer用给定语句设置代码和计时器函数创建一个实例,用timeit()执行测试
            全局变量参数指定要在其中执行代码的名称空间
        参数:
            stmt: 测试代码。字符串表达式,单个变量,函数。
            setup: 这将stmt的环境传进去。比如各种import和参数什么的。
            timer: 这个参数一般使用不到,具体使用可以参看文档。
   
    timeit.repeat(stmt =
'pass',setup ='pass',timer = <default timer>,repeat = 3
                    number =
1000000,globals = None
        Timer用给定语句设置代码和计时器函数创建一个实例,用repeat()执行重复测试
        全局变量参数指定要在其中执行代码的名称空间。
   
    timeit.default_timer()
        默认定时器time.perf_counter()
-------------------------------------------------------------------------------

2.2.class timeit.Timer(stmt ='pass',setup ='pass',timer = <timer function>,
                        globals =
None
    小代码片段的定时执行速度类。
   
    stmt和setup包含多个由
";"或换行符分隔语句,不包含多行字符串文字。
    默认在timeit的名称空间内执行; 可以通过传递一个名称空间给全局变量来控制。
    说明:
        和函数相比多了一个重复调用次数。
        度量一条语句执行时间,用timeit()方法。
        该语句和设置参数也可以采取的是不带参数的可调用的对象。

 

timeit(number = 1000000
    主要语句的时间编号执行。
    执行一次设置语句,返回多次执行主语句所需时间float秒

autorange(callback =
None
    自动确定调用次数timeit()

repeat(repeat =
3,number = 1000000
    重复调用timeit()次数
    参数1指定调用多少次timeit();参数2指定timeit()测试次数。

 

-------------------------------------------------------------------------------
3.实例

import timeit
#-----------------------------------------------------------------------------
#
测试语句1:timeit
# timeit(函数名_字符串,运行环境_字符串,number=运行次数)

 

a=timeit.timeit('id=a;name=b',setup='a=1000;b="Tom"',number=1000000)
print('1.1.testTime=',a)
#*******************************************
s='id=a;name=b'
a=timeit.timeit(stmt=s,setup='a=1000;b="Tom"',number=1000000)
print('1.2.testTime=',a)
#*******************************************
s = """\
id=a
name=b
"""

a=timeit.timeit(stmt=s,setup='a=1000;b="Tom"',number=1000000)
print('1.3.testTime=',a)
#*******************************************
 

#测试语句2:timeit.Timer
 

a=timeit.Timer('id=a;name=b','a=1000;b="Tom"').timeit(number=1000000)
print('1.4.testTime=',a)
#*******************************************
t=timeit.Timer('id=a;name=b','a=1000;b="Tom"')

a1=t.timeit(
number=1000000)
a2=t.repeat(
repeat = 3,number = 1000000)
print('1.5.testTime=',a1,a2)
#*******************************************
 


#-----------------------------------------------------------------------------
#
测试函数
    #setup=传递一个包含导入语句
#    另一个选择传递globals=globals(),这会导致代码在当前的全局名称空间内执行。

 

*******************************************
#
测试语句 :timeit
s='L = [i for i in range(n)]'
a=timeit.timeit(stmt=s,setup='n=100',number=100000)
print('2.0.testTime=',a)
#*******************************************
#
测试函数
def test(n):
   
L = [i for i in range(n)]

#if __name__ == '__main__':
a=timeit.timeit("test(100)", setup="from __main__ import test",number=100000)
print('2.1.testTime=',a)
#*******************************************
a=timeit.timeit('test(100)',number=100000, globals=globals())
print('2.2.testTime=',a)
#*******************************************
#
测试多个函数

def f(x):return x**2
def g(x):return x**4
def h(x):return x**8

a=timeit.timeit('[func(42) for func in (f,g,h)]',number=100000,globals=globals())
print('2.3.testTime=',a)
#*******************************************
 

------------------------------------------------------------------------------

#测试重复次数   timeit.repea
#repeat和timeit用法相似,多一个repeat参数(重复测试次数=3.),返回时间列表

 

a=timeit.repeat("test(100)", setup="from __main__ import test",number=100000,repeat=3)
print('3.1.testTime=',a,'min=',min(a))
#*******************************************
#
测试重复次数   timeit.Timer
t=timeit.Timer(stmt ='test(n)',setup ='n=100',globals = globals())
a1=t.timeit(
number=100000)
a2=t.repeat(
repeat = 3,number = 100000)
print('3.2.testTime=',a1,a2,'min=',min(a2))
 

#-----------------------------------------------------------------------------

#>>>
#1.1.testTime= 0.04432365000000005
#1.2.testTime= 0.04307258300000005
#1.3.testTime= 0.044008316999999963
#1.4.testTime= 0.04538698299999999
#1.5.testTime= 0.044759738999999965 [0.04225173900000001, 0.041612761, 0.04221409500000006]
#2.0.testTime= 0.5714974949999999
#2.1.testTime= 0.531626156
#2.2.testTime= 0.534958423
#2.3.testTime= 0.2584878100000001
#3.1.testTime= [0.5270306009999999, 0.5233380219999999, 0.5257756219999998] min= 0.5233380219999999
#3.2.testTime= 0.5361430020000002 [0.5355201569999997, 0.5308390449999996, 0.5279976230000001] min= 0.5279976230000001
#>>>

 

-------------------------------------------------------------------------------

 

这篇关于python timeit-程序测试(汇总-全) tcy的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829112

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e