pandas 学习汇总2 - 数据帧DataFrame创建(12种方法)( tcy)

2024-03-20 09:48

本文主要是介绍pandas 学习汇总2 - 数据帧DataFrame创建(12种方法)( tcy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据帧(DataFrame)  2018/12/2

函数 

函数
pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
# 参数:
data数据:ndarray(结构化或记录),series,map,lists,dict,constant,Series,DataFrame
index行标签;columns列标签
# 注意:
DataFrame不像二维NumPyndarray那样工作。

创建

# 实例1:创建空的数据帧
df = pd.DataFrame() # Columns: [] Index: []# 实例2:list创建
df = pd.DataFrame([1, 2, 3, 4, 5]) #创建1列5行数据data = [['Tom', 10], ['Bob', 12]]
data=list(zip(['Tom','Bob'],[10,12]))
df = pd.DataFrame(data, columns=['Name', 'Age'], dtype=float)#创建2列2行数据# 实例3:dict创建
data = {'Name': ['Tom', 'Jack'], 'Age': [28, 34]}
data=dict([('Name',['Tom', 'Jack']),('Age', [28, 34])])
df = pd.DataFrame(data, index=['row1', 'row2']) # 创建2列2行数据df=pd.DataFrame([pd.Series(data['Name']),pd.Series(data['Age'])],index=['row1','row2'])
df.columns=['Name','Age'] #等价上面,不能指定columns(指定结果全为Na)# 实例4:ndarray 1D,2D创建
dates = pd.date_range('2018-12-02', periods=2)
pd.DataFrame(np.array([1, 2]), columns=['a'],index=dates)# 创建1列2行数据
pd.DataFrame([[1, 2], [3, 4]], columns=list('ab')) # 创建2列2行数据# 实例4:ndarray-结构化数组创建
dt = np.dtype([('name', 'S10'), ('age', np.int32)])
data = np.array([('Tom', 20), ('Bob', 30)], dtype=dt) # 创建2列2行数据
df = pd.DataFrame(data)# 实例4:ndarray-记录数组创建
recordarr = np.rec.array([('Tom', 20), ('Bob', 30)], dtype=dt)
df = pd.DataFrame(recordarr) # 结果同上# 实例5:Series创建
d = {'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), # 自动广播
'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])} # 创建2列4行数据
df = pd.DataFrame(d)# 实例6:DataFrame-创建
df1 = pd.DataFrame(df)#创建新数据帧

其他方式创建 

# 实例7:备用构造函数from_dict-创建
pd.DataFrame.from_dict(dict([('A', [1, 2, 3]), ('B', [4, 5, 6])]))# 创建2列3行数据# 实例8:from_records-创建
# from_records获取元组列表或带有结构化dtype的ndarray。data = np.array([(1, 2., b'Tom'), (2, 3., b'Bob')],
dtype=[('No', '<i4'), ('Money', '<f4'), ('Name', 'S10')])
pd.DataFrame.from_records(data, index=['one', 'two']) # 创建2列3行数据
# No Money Name
# one 1 2.0 b'Tom'
# two 2 3.0 b'Bob'# 实例9:.pandas.read_csv,pandas.read_table
df = pd.DataFrame(data = [('str1', 1), ('str2', 2), ('str3', 3)],
columns=['Names', 'Births']) # 创建2列3行数据'df.to_csv('temp_file.csv',index=False,header=False) # save datafile_path = r'C:\Users\Administrator\PycharmProjects\test_qt\temp_file.csv'df = pd.read_csv(file_path, header=None) #数据没有列名
df = pd.read_csv(file_path, names=['Names','Births']) #数据列名df = pd.read_table(file_path, header=None,delimiter =',') #数据没有列名
df = pd.read_table(file_path, names=['Names','Births'],delimiter =',') #数据列名# 实例10:dict-元组的词典创建
pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
# a b
# b a c a b
# A B 1.0 4.0 5.0 8.0 10.0
# C 2.0 3.0 6.0 7.0 NaN
# D NaN NaN NaN NaN 9.0# 实例11:综合创建:
df=pd.DataFrame({ 'A' : 1.,#行标签0,1,2,3 列标签A,B,C,D,E,F
'B' : pd.Timestamp('20181013'),
'C' : pd.Series(np.array(4,np.int64),index=list('ghik')),
'D' : np.array([3] * 4,dtype='int32'),
'E' : pd.Categorical(["str1","str2","str3","str4"]),
'F' : 'foo' })# A B C D E F
# g 1.0 2018-10-13 4 3 str1 foo
# h 1.0 2018-10-13 4 3 str2 foo
# i 1.0 2018-10-13 4 3 str3 foo
# k 1.0 2018-10-13 4 3 str4 foodf2.dtypes# A float64
# B datetime64[ns]
# C int64
# D int32
# E category
# F object
# dtype: object

 

 

 

这篇关于pandas 学习汇总2 - 数据帧DataFrame创建(12种方法)( tcy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829072

相关文章

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔