linux部署Mixtral-8x7B-Instruct实践(使用vLLM/ transformer+fastapi)

本文主要是介绍linux部署Mixtral-8x7B-Instruct实践(使用vLLM/ transformer+fastapi),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前提说明:

  • 这次实践用了两张A800(80G),每张卡消耗70G显存,总计140G

step1:下载模型

从huggingface(需科学上网)和modelscope两个平台下载模型
模型目录

step2:安装vLLM

之前部署大模型用transformer库+OpenAI api,会有推理速度慢,server部署起来比较复杂的缺点,vLLM是一个LLM推理和服务库,原理类似于操作系统的虚拟内存。
在这里插入图片描述
现在说怎么安装,安装很简单

pip install vLLM	

要安装3G左右的包。
#step3 使用vLLM部署Mixtral 8*7b(重点)
先丢一串命令

python -u -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --model /data/models/Mixtral-8x7B-Instruct-v0.1 --tensor-parallel-size 2

别着急,一个一个解释,先说跟python命令相关的,-u指python输出不缓冲,-m告诉python运行一个库模块,--host 指定服务器监听的主机地址,--model指定要使用的模型的路径,--tensor-parallel-size使得模型的张量可以分布在两个及以上GPU上,一张80G的A800放不下Mixtral 8*7b的参数(140),指定tensor-parallel-size=2将参数拆到两块上面,一张卡70G。

  • --host 0.0.0.0 允许任何IP地址的设备都能访问这个服务
  • --port 指定服务端口,默认是8000
  • --model /data/models/Mixtral-8x7B-Instruct-v0.1 可以是模型名称或者本地路径。指定咱们使用Mixtral-8x7B-Instruct-v0.1模型,注意这里指定了模型所在路径,如果模型需要在线下载,直接指定模型名称,超大模型不建议在线下载,因为不稳定,而且代理没有那么多流量啊。
  • --tensor-parallel-size 2指定张量并行的GPU数量,Mixtral模型有32个注意力头,必须均匀的分在GPU中,所以必须是32的因数(2、4、8、16),否则会报ValueError: Total number of attention heads (32) must be divisible by tensor parallel size (3).错误

其他没有用到的参数:

  • --chat-template 聊天的模板,用户的输入+模板=最后的prompt
  • --trust-remote-code 默认为false,如果人为修改过下载后的模型的话,会报错,建议设置成True
  • --download-dir 在线下载模型权重时,指定的下载路径,默认是~/.cache
  • --worker-use-ray 是否用ray来实现分布式推理服务,在GPU>2时默认开启
  • --gpu-memory-utilizationGPU的利用率,0~1之间,默认是0.9,比如我是两张80G的卡,参数0.9,每张卡最高使用72G显存。如果显卡多,4张80G的卡,参数设置成0.5,就是每张显卡最多占40G显存,需要4张卡才能跑。感觉用不到,设置成0.5四张卡,不如0.9两张卡,还能有两张卡空闲着,除非四张卡的并行推理能提高推理速度。
    在这里插入图片描述

step4 发请求

requests库来模拟请求。model换成模型的目录

import requests
import json# 定义请求的 URL 和数据
url = "http://<IP>:8000/v1/completions"
data = {"model": "/data/models/Mixtral-8x7B-Instruct-v0.1","prompt": "请介绍一下AI的发展历史,AI的未来会如何发展?","max_tokens": 1000,"temperature": 0.2
}# 发送 POST 请求
response = requests.post(url, json=data)# 检查响应
if response.status_code == 200:print("请求成功!")print("响应内容:", response.json()['choices'][0]["text"])
else:print("请求失败,状态码:", response.status_code)

解释一下参数:

  • max-tokens:inputs_tokens+response_tokens的最大值,这里设置成1000
  • temperature:温度越低,选可能性更高的token作为response,也就是回答越精炼、准确、字数越少。反之,更有多样性、发散、字数更多。建议值是0.2~1,如果设置成0,会导致每次询问都是同样的回答。

在这里插入图片描述

总结

vLLM作为一个推理和部署库,一条命令就能部署大模型推理服务。覆盖了用transformer和openapi或者FastAPI部署服务的过程,用起来很方便。

使用Transformer+fastapi

Step1:从本地加载模型

model_id = "/data/models/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side='left')
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")	

float16精度下只能在GPU上推理,占用显存90G在这里插入图片描述
device_map="auto"自动把模型的不同层放到三块GPU上。
Step2:构造prompt模板
参考:huggingface Mixtral-8x7B-Instruct-v0.1主页 Instruction format部分
prompt必须严格遵循下面的格式,否则模型会胡言乱语(盲猜模型训练格式就是这个)

<s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
def add_template_to_prompt(prompt):# prompt_templated = f"<s> [INST] {prompt} [/INST] Model answer </s> [INST] Follow-up instruction [/INST]"prompt_templated = f"<s> [INST] {prompt} [/INST] </s>"return prompt_templated

Step3: fastapi

app = FastAPI()
@app.post("/v1/completions")
async def chat(argument: ModelAugument):prompt_templated = add_template_to_prompt(argument.prompt)inputs = tokenizer(text=prompt_templated, return_tensors="pt")outputs = model.generate(**inputs, max_new_tokens=argument.max_tokens)outputs_text = tokenizer.decode(outputs[0], skip_special_tokens=True)return outputs_text[outputs_text.find("[/INST]") + 7:] # truncate the prompt(as prefix)

Mixtral的又把prompt作为前缀输出了一遍,在Mistral的回答中prompt后面的才是真正的回答,所以做了个截断。举个例子:
prompt:

你好

模板化后:

<s> [INST] 你好 [/INST] </s>

Mistral回答

  [INST] 你好 [/INST] Hello! 你需要什么帮助吗?(Hello! Do you need any help?)

完整代码:

from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi import FastAPI
from pydantic import BaseModelapp = FastAPI()model_id = "/data/models/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side='left')
model = AutoModelForCausalLM.from_pretrained(model_id)class ModelAugument(BaseModel):prompt: strtemperature: floatmax_tokens: intdef add_template_to_prompt(prompt):# prompt_templated = f"<s> [INST] {prompt} [/INST] Model answer </s> [INST] Follow-up instruction [/INST]"prompt_templated = f"<s> [INST] {prompt} [/INST] </s>"return prompt_templated@app.post("/v1/completions")
async def chat(argument: ModelAugument):prompt_templated = add_template_to_prompt(argument.prompt)inputs = tokenizer(text=prompt_templated, return_tensors="pt")outputs = model.generate(**inputs, max_new_tokens=argument.max_tokens)outputs_text = tokenizer.decode(outputs[0], skip_special_tokens=True)# outputs_text = outputs_text[outputs_text.find("[/INST]") + 7:] # truncate the prompt(as prefix)return outputs_text

这篇关于linux部署Mixtral-8x7B-Instruct实践(使用vLLM/ transformer+fastapi)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828643

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF