大模型文本生成——解码策略(Top-k Top-p Temperature)

2024-03-20 04:44

本文主要是介绍大模型文本生成——解码策略(Top-k Top-p Temperature),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

{"top_k": 10,"temperature": 0.95,"num_beams": 1,"top_p": 0.8,"repetition_penalty": 1.5,"max_tokens": 30000,"message": [{"content": "你好!","role": "user"}]
}

在大模型训练好之后,如何对训练好的模型进行解码(decode)是一个火热的研究话题。

在自然语言任务中,我们通常使用一个预训练的大模型(比如GPT)来根据给定的输入文本(比如一个开头或一个问题)生成输出文本(比如一个答案或一个结尾)。为了生成输出文本,我们需要让模型逐个预测每个 token ,直到达到一个终止条件(如一个标点符号或一个最大长度)。在每一步,模型会给出一个概率分布,表示它对下一个单词的预测。例如,如果输入的文本是“我最喜欢的”,那么模型可能会给出下面的概率分布:

那么,我们应该如何从这个概率分布中选择下一个单词呢?以下是几种常用的方法:

  • 贪心解码(Greedy Decoding):直接选择概率最高的单词。这种方法简单高效,但是可能会导致生成的文本过于单调和重复。
  • 随机采样(Random Sampling):按照概率分布随机选择一个单词。这种方法可以增加生成的多样性,但是可能会导致生成的文本不连贯和无意义。
  • Beam Search:维护一个大小为 k 的候选序列集合,每一步从每个候选序列的概率分布中选择概率最高的 k 个单词,然后保留总概率最高的 k 个候选序列。这种方法可以平衡生成的质量和多样性,但是可能会导致生成的文本过于保守和不自然。

以上方法都有各自的问题,而 top-k 采样和 top-p 采样是介于贪心解码和随机采样之间的方法,也是目前大模型解码策略中常用的方法。

top-k采样

在上面的例子中,如果使用贪心策略,那么选择的 token 必然就是“女孩”。

贪心解码是一种合理的策略,但也有一些缺点。例如,输出可能会陷入重复循环。想想智能手机自动建议中的建议。当你不断地选择建议最高的单词时,它可能会变成重复的句子。

Top-k 采样是对前面“贪心策略”的优化,它从排名前 k 的 token 中进行抽样,允许其他分数或概率较高的token 也有机会被选中。在很多情况下,这种抽样带来的随机性有助于提高生成质量。

top-k 采样的思路是,在每一步,只从概率最高的 k 个单词中进行随机采样,而不考虑其他低概率的单词。例如,如果 k=2,那么我们只从女孩、鞋子中选择一个单词,而不考虑大象、西瓜等其他单词。这样可以避免采样到一些不合适或不相关的单词,同时也可以保留一些有趣或有创意的单词。

下面是 top-k 采样的例子:

通过调整 k 的大小,即可控制采样列表的大小。“贪心策略”其实就是 k = 1的 top-k 采样。

下面是top-k 的代码实现:

import torch
from labml_nn.sampling import Sampler# Top-k Sampler
class TopKSampler(Sampler):# k is the number of tokens to pick# sampler is the sampler to use for the top-k tokens# sampler can be any sampler that takes a logits tensor as input and returns a token tensor; e.g. `TemperatureSampler`.def __init__(self, k: int, sampler: Sampler):self.k = kself.sampler = sampler# Sample from logitsdef __call__(self, logits: torch.Tensor):# New logits filled with −∞; i.e. zero probabilityzeros = logits.new_ones(logits.shape) * float('-inf')# Pick the largest k logits and their indicesvalues, indices = torch.topk(logits, self.k, dim=-1)# Set the values of the top-k selected indices to actual logits.# Logits of other tokens remain −∞zeros.scatter_(-1, indices, values)# Sample from the top-k logits with the specified sampler.return self.sampler(zeros)

总结一下,top-k 有以下有点:

  • 它可以根据不同的输入文本动态调整候选单词的数量,而不是固定为 k 个。这是因为不同的输入文本可能会导致不同的概率分布,有些分布可能比较平坦,有些分布可能比较尖锐。如果分布比较平坦,那么前 k 个单词可能都有相近的概率,那么我们就可以从中进行随机采样;如果分布比较尖锐,那么前 k 个单词可能会占据绝大部分概率,那么我们就可以近似地进行贪心解码。
  • 它可以通过调整 k 的大小来控制生成的多样性和质量。一般来说,k 越大,生成的多样性越高,但是生成的质量越低;k 越小,生成的质量越高,但是生成的多样性越低。因此,我们可以根据不同的任务和场景来选择合适的k 值。
  • 它可以与其他解码策略结合使用,例如温度调节(Temperature Scaling)、重复惩罚(Repetition Penalty)、长度惩罚(Length Penalty)等,来进一步优化生成的效果。

但是 top-k 也有一些缺点,比如:

  • 它可能会导致生成的文本不符合常识或逻辑。这是因为 top-k 采样只考虑了单词的概率,而没有考虑单词之间的语义和语法关系。例如,如果输入文本是“我喜欢吃”,那么即使饺子的概率最高,也不一定是最合适的选择,因为可能用户更喜欢吃其他食物。
  • 它可能会导致生成的文本过于简单或无聊。这是因为 top-k 采样只考虑了概率最高的 k 个单词,而没有考虑其他低概率但有意义或有创意的单词。例如,如果输入文本是“我喜欢吃”,那么即使苹果、饺子和火锅都是合理的选择,也不一定是最有趣或最惊喜的选择,因为可能用户更喜欢吃一些特别或新奇的食物。

因此,我们通常会考虑 top-k 和其它策略结合,比如 top-p。

top-p采样

top-k 有一个缺陷,那就是“k 值取多少是最优的?”非常难确定。于是出现了动态设置 token 候选列表大小策略——即核采样(Nucleus Sampling)。

top-p 采样的思路是,在每一步,只从累积概率超过某个阈值 p 的最小单词集合中进行随机采样,而不考虑其他低概率的单词。这种方法也被称为核采样(nucleus sampling),因为它只关注概率分布的核心部分,而忽略了尾部部分。例如,如果 p=0.9,那么我们只从累积概率达到 0.9 的最小单词集合中选择一个单词,而不考虑其他累积概率小于 0.9 的单词。这样可以避免采样到一些不合适或不相关的单词,同时也可以保留一些有趣或有创意的单词。

下图展示了 top-p 值为 0.9 的 Top-p 采样效果:

top-p 值通常设置为比较高的值(如0.75),目的是限制低概率 token 的长尾。我们可以同时使用 top-k 和 top-p。如果 k 和 p 同时启用,则 p 在 k 之后起作用。

下面是 top-p 代码实现的例子:

import torch
from torch import nnfrom labml_nn.sampling import Samplerclass NucleusSampler(Sampler):"""## Nucleus Sampler"""def __init__(self, p: float, sampler: Sampler):""":param p: is the sum of probabilities of tokens to pick $p$:param sampler: is the sampler to use for the selected tokens"""self.p = pself.sampler = sampler# Softmax to compute $P(x_i | x_{1:i-1})$ from the logitsself.softmax = nn.Softmax(dim=-1)def __call__(self, logits: torch.Tensor):"""Sample from logits with Nucleus Sampling"""# Get probabilities $P(x_i | x_{1:i-1})$probs = self.softmax(logits)# Sort probabilities in descending ordersorted_probs, indices = torch.sort(probs, dim=-1, descending=True)# Get the cumulative sum of probabilities in the sorted ordercum_sum_probs = torch.cumsum(sorted_probs, dim=-1)# Find the cumulative sums less than $p$.nucleus = cum_sum_probs < self.p# Prepend ones so that we add one token after the minimum number# of tokens with cumulative probability less that $p$.nucleus = torch.cat([nucleus.new_ones(nucleus.shape[:-1] + (1,)), nucleus[..., :-1]], dim=-1)# Get log probabilities and mask out the non-nucleussorted_log_probs = torch.log(sorted_probs)sorted_log_probs[~nucleus] = float('-inf')# Sample from the samplersampled_sorted_indexes = self.sampler(sorted_log_probs)# Get the actual indexesres = indices.gather(-1, sampled_sorted_indexes.unsqueeze(-1))#return res.squeeze(-1)

Temperature采样

Temperature 采样受统计热力学的启发,高温意味着更可能遇到低能态。在概率模型中,logits 扮演着能量的角色,我们可以通过将 logits 除以温度来实现温度采样,然后将其输入 Softmax 并获得采样概率。

越低的温度使模型对其首选越有信心,而高于1的温度会降低信心。0温度相当于 argmax 似然,而无限温度相当于均匀采样。

Temperature 采样中的温度与玻尔兹曼分布有关,其公式如下所示:

\rho_i = \frac{1}{Q}e^{-\epsilon_i/kT}=\frac{e^{-\epsilon i/kT}}{\sum{j=1}^M e^{-\epsilon_j/kT}}\\

其中 

\rho_i

 是状态 

i

 的概率, 

\epsilon_i

 是状态 

i

 的能量, 

k

 是波兹曼常数, 

T

 是系统的温度, 

M

 是系统所能到达的所有量子态的数目。

有机器学习背景的朋友第一眼看到上面的公式会觉得似曾相识。没错,上面的公式跟 Softmax 函数 :

\text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{c=1}^Ce^{z_c}}\\

很相似,本质上就是在 Softmax 函数上添加了温度(T)这个参数。Logits 根据我们的温度值进行缩放,然后传递到 Softmax 函数以计算新的概率分布。

上面“我喜欢漂亮的___”这个例子中,初始温度 

T=1

 ,我们直观看一下 

T

 取不同值的情况下,概率会发生什么变化:

通过上图我们可以清晰地看到,随着温度的降低,模型愈来愈越倾向选择”女孩“;另一方面,随着温度的升高,分布变得越来越均匀。当 

T=50

 时,选择”西瓜“的概率已经与选择”女孩“的概率相差无几了。

通常来说,温度与模型的“创造力”有关。但事实并非如此。温度只是调整单词的概率分布。其最终的宏观效果是,在较低的温度下,我们的模型更具确定性,而在较高的温度下,则不那么确定

下面是 Temperature 采样的代码实现:

import torch
from torch.distributions import Categoricalfrom labml_nn.sampling import Samplerclass TemperatureSampler(Sampler):"""## Sampler with Temperature"""def __init__(self, temperature: float = 1.0):""":param temperature: is the temperature to sample with"""self.temperature = temperaturedef __call__(self, logits: torch.Tensor):"""Sample from logits"""# Create a categorical distribution with temperature adjusted logitsdist = Categorical(logits=logits / self.temperature)# Samplereturn dist.sample()

联合采样(top-k & top-p & Temperature)

通常我们是将 top-k、top-p、Temperature 联合起来使用。使用的先后顺序是 top-k->top-p->Temperature。

我们还是以前面的例子为例。

首先我们设置 top-k = 3,表示保留概率最高的3个 token。这样就会保留女孩、鞋子、大象这3个 token。

  • 女孩:0.664
  • 鞋子:0.199
  • 大象:0.105

接下来,我们可以使用 top-p 的方法,保留概率的累计和达到 0.8 的单词,也就是选取女孩和鞋子这两个 token。接着我们使用 Temperature = 0.7 进行归一化,变成:

  • 女孩:0.660
  • 鞋子:0.340

接着,我们可以从上述分布中进行随机采样,选取一个单词作为最终的生成结果。

参考

https://nn.labml.ai/sampling/index.html

Huggingface的GenerationConfig 中的top_k与top_p详细解读

Temperature

ChatGPT模型采样算法详解-阿里云开发者社区

ChatGPT模型采样算法详解_JarodYv的博客-CSDN博客

大语言模型参数说明(Temperature,Top p,Top k)

这篇关于大模型文本生成——解码策略(Top-k Top-p Temperature)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828321

相关文章

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL