代码随想录算法训练营第53天 | 1143.最长公共子序列 ,1035.不相交的线 ,53. 最大子序和

本文主要是介绍代码随想录算法训练营第53天 | 1143.最长公共子序列 ,1035.不相交的线 ,53. 最大子序和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划章节理论基础:

https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html

1143.最长公共子序列

题目链接:https://leetcode.cn/problems/longest-common-subsequence/description/

思路:

本题和动态规划:718. 最长重复子数组区别在于这里不要求是连续的了,但要有相对顺序,即:“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。

动规五部曲:
(1)确定dp数组以及下标含义
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

(2)确定递归公式
主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

(3)dp数组初始化
先看看dp[i][0]应该是多少呢?
test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

(4)确定遍历顺序
从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
在这里插入图片描述
那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

(5)举例推导dp数组
以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:
在这里插入图片描述
最后红框dp[text1.size()][text2.size()]为最终结果

代码:

class Solution {public int longestCommonSubsequence(String text1, String text2) {int m = text1.length();int n = text2.length();// dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]int[][] dp = new int[m + 1][n + 1];//int result = 0;for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {if(text1.charAt(i-1) == text2.charAt(j-1)){dp[i][j] = dp[i-1][j-1]+1; }else{dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);}//result = Math.max(dp[i][j],result);}}return dp[m][n];}
}

1035.不相交的线

题目链接:https://leetcode.cn/problems/uncrossed-lines/description/

思路:

直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。

拿示例一A = [1,4,2], B = [1,2,4]为例,相交情况如图:
在这里插入图片描述
其实也就是说A和B的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串A中数字1的后面,那么数字4也应该在字符串B数字1的后面)

这么分析完之后,大家可以发现:本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!
那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列就是一样一样的了。

一样到什么程度呢? 把字符串名字改一下,其他代码都不用改,直接copy过来就行了。

代码:

class Solution {public int findLengthOfLCIS(int[] nums) {int n = nums.length;int[] dp = new int[n];// if (n <= 1)// return 1;int result = 1;Arrays.fill(dp, 1);for (int i = 1; i < n; i++) {if (nums[i] > nums[i - 1])dp[i] = dp[i - 1] + 1;if (dp[i] > result)result = dp[i];}return result;}
}

53. 最大子序和

题目链接:https://leetcode.cn/problems/maximum-length-of-repeated-subarray/description/

思路:

这道题之前我们在讲解贪心专题的时候用贪心算法解决过一次,贪心算法:最大子序和 。
这次我们用动态规划的思路再来分析一次。

动规五部曲:
(1)确定dp数组以及下标含义
dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。

(2)确定递归公式
dp[i]只有两个方向可以推出来:
dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和
一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

(3)dp数组初始化
从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。
dp[0]应该是多少呢?
根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。

(4)确定遍历顺序
递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

(5)举例推导dp数组
以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:
在这里插入图片描述
注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。

在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。

那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。

所以在递推公式的时候,可以直接选出最大的dp[i]。

代码:

class Solution {public int maxSubArray(int[] nums) {int n = nums.length;int[] dp = new int[n];dp[0] = nums[0];int result = dp[0];for(int i=1;i<n;i++){// 有两种策略,一种是从当前数字开始算,一种是从前面取dp[i] = Math.max(nums[i],dp[i-1]+nums[i]);result = Math.max(result,dp[i]);} // 最后的结果不是dp[n-1],需要注意return result;}
}

这篇关于代码随想录算法训练营第53天 | 1143.最长公共子序列 ,1035.不相交的线 ,53. 最大子序和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828265

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum