AI大模型额外学习一:斯坦福AI西部世界小镇笔记(包括部署和源码分析)

本文主要是介绍AI大模型额外学习一:斯坦福AI西部世界小镇笔记(包括部署和源码分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、简单介绍
      • 1)项目代码介绍
      • 2)重新播放模拟
      • 3)适当修改分叉模拟
    • 二、部署斯坦福小镇Demo
      • 1)准备工作
      • 2)解决遇到的bug
      • 3)启动服务器和前端
    • 三、源码剖析
      • 1)主题顺序

github链接

一、简单介绍

①背景介绍
This repository accompanies our research paper titled “Generative Agents: Interactive Simulacra of Human Behavior.” It contains our core simulation module for generative agents—computational agents that simulate believable human behaviors—and their game environment.

②总体逻辑
让小镇的NPC自由交流、开party、生活有条不紊
在这里插入图片描述
③总结:
Ai会感知周边环境,并将视野里发生的事件记录下来,加入自己的记忆流。之后,不论是Ai计划要做的事,还是对外界的反应,都会受到这个记忆的影响,并依靠ChatGPT进行决策,最后决策的事件也会加入记忆流,形成新的记忆。让NPC具备记忆系统,并依靠大语言模型来帮助NPC做出行动决策

https://github.com/joonspk-research/generative_agents/tree/main
https://www.zhihu.com/question/425708656
https://github.com/joonspk-research/generative_agents/tree/main
https://github.com/search?q=generative-agents&type=repositories

1)项目代码介绍

①项目有后端服务器backend_server和前端服务器frontend_server
②storage会保存程序运行的记录信息

2)重新播放模拟

打开浏览器,输入

http://localhost:8000/replay/<simulation-name>/<starting-time_step>

3)适当修改分叉模拟

在这里插入图片描述
这里的模拟是Isabella,scratch.json里面包括人物性格描述、居住地点、生活方式等,
spatial_memory.json里面还有房间布局等等

二、部署斯坦福小镇Demo

1)准备工作

①安装aneconda
②下载仓库代码

git clone https://github.com/joonspk-research/generative_agents.gitcd    generative_agents

③用vscode打开generative_agents目录
在这里插入图片描述
④在reverie目录的backend_server下载创建文件utils.py文件,填入以下内容
在这里插入图片描述

# Copy and paste your OpenAI API 
Keyopenai_api_key ="<Your OpenAI API>"
# Put your name
key_owner = "<Name>"maze assets loc ="../../enviroment/frontend_server/static_dirs/assets"
envircenv_matrix=f"{maze_assets_loc}/the_ville/matrix"
env_visuals =f"{maze assets loc}/the_ville/visuals"fs_storage ="../../environment/frontend server/storage"
fs_temp_storage ="../../environment/frontend_server/temp_storage"collision block id ="32125'# Verbose
debug = True

⑤填入OPEN AI API Keys和秘钥的名字
在这里插入图片描述

⑥创建新conda环境

conda create -n genagents python=3.11.4#激活新环境
conda activate genagents

2)解决遇到的bug

①pillow需要更新到最新的从8.4.0改到9.5.0
在这里插入图片描述

python -m pip install -r requirements.txt

②打开backend_server目录下的reverie.py文件,跳转400行
在这里插入图片描述

curr_move_path=f"{sim_folder}/movement"
#If the folder doesn't exist, we create it
if not os.path.exists(curr_move_path):os.makedirs(curr_move_path)

3)启动服务器和前端

①切换到前端目录,然后运行脚本

cd environment/frontend_server
python   manage.py runserver

②打开浏览器,输入

1.7.0.0.1:8000

在这里插入图片描述

有以上图片则表示启动成功

可以看到前端url的地址是

127.0.0.1:8000

③启动新终端来开启服务器

cd generative_agents
conda activate genagents
cd reverie/backend_server#准备开启服务器
python reverie.py

④回答要进入的分叉模拟(forked simulation):
现在是用现有的模板做三个代理(agent)

base_the_ville_sabella_maria_klaus

在这里插入图片描述
接着命名这个分叉模拟,随意,就叫test
在这里插入图片描述
⑤先跑3步,注意这里的步数,如果跑太多,token消耗的次数越多,3步就几刀
就可看到输出:
在这里插入图片描述

三、源码剖析

1)主题顺序

  • 简短说明
    ①根据填入的演变次数,来决定循环的次数
    ②便利所有的agent,每个agent执行自己的plan函数,也就是每个人作为一个agent
    ③根据第二步拿到的计划,然后执行计划
    ④执行计划之后,先看初始地点有那些人,然后利用prompt去跟这些人互动相互交流,跟同地点的人互动之后再用prompt修改当前的做事计划,然后让别人知道我在干嘛
    ⑤然后根据之前的今日的计划安排把自己以往的记忆用prompt进行评分排序
    (比如做瑜伽重要,就排前面)
    ⑥根据自己的计划和这个地方的场所列表,用promopt对要去的地方打分,就可以去那个排名第一的地方了

  • 详细说明

①根据填入的演变次数,来决定循环的次数

for repeat in range(repeats):....

②便利所有的agent,每个agent执行自己的plan函数,也就是每个人作为一个agent

for agent in agents:agent.plan(global_time,prompt_meta)

而每个agent都是由每个人的名字、描述、初始出生地点(从simulation_config.json里面读取,team_people都是镇上的人)构造出来
在这里插入图片描述
而这个plan函数就是给OpenAI接口一个prompt,如下:
在这里插入图片描述
根据今天时间写下今天的每小时计划安排
③根据第二步拿到的计划,然后执行计划
在这里插入图片描述
④执行计划之后,先看初始地点有那些人,然后利用prompt去跟这些人互动相互交流,跟同地点的人互动之后再用prompt修改当前的做事计划,然后让别人知道我在干嘛
在这里插入图片描述
⑤然后根据之前的今日的计划安排把自己以往的记忆用prompt进行评分排序
(比如做瑜伽重要,就排前面)
在这里插入图片描述

⑥根据自己的计划和这个地方的场所列表,用promopt对要去的地方打分,就可以去那个排名第一的地方了
在这里插入图片描述

这篇关于AI大模型额外学习一:斯坦福AI西部世界小镇笔记(包括部署和源码分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/827626

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja