格式化数据#3:有关逻辑推理/语义的资源

2024-03-19 05:38

本文主要是介绍格式化数据#3:有关逻辑推理/语义的资源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者搜集的有关逻辑推理/语义的资源,最新版本请看:http://lore.chuci.info/taurenshaman/json/3b001fbce2544abb8fe8197a5f8b2a4c


{"title": "Project/Library: Logic/Semantic","items": [{"title": "Euler","description": "Euler is an inference engine supporting logic based proofs. It is a backward-chaining reasoner enhanced with Euler path detection. ","tags": "逻辑推理","language": null,"license": null,"url": "http://eulersharp.sourceforge.net/","reference": null},{"title": "RomanticWeb:.net中的RDF-对象映射库","description": "RomanticWeb is the world’s first ORM class solution for graph-based data written fully in C# that allows developers to work with the RDF data in a way the would work with any other data in an object oriented manner. This can be achieved by creating data models that can then be mapped to RDF statements in a fully transparent way. RomanticWeb is also the first solution that in conjuction with it’s mapping abilities allows to query for the data in a native .net way with LINQ. Developers can use their natural approach while working with data and objects and query for them with strongly typed queries, which are then translated into a SPARQL Protocol And RDF Query Language.","tags": "RDF; Semantic Web","language": "C#","license": "BSD","url": "http://github.com/MakoLab/RomanticWeb","reference": ["http://romanticweb.net"]},{"title": ".net下的开源RDF框架:dotNetRDF","description": "The aim of the dotNetRDF Project is to create an Open Source .Net Library using the latest versions of the .Net Framework to provide a powerful and easy to use API for working with RDF, SPARQL and the Semantic Web. Our primary aim is to provide an effective way for working with reasonable amounts of RDF in .Net.","tags": "RDF; Semantic Web","language": "C#","license": "MIT","url": "https://bitbucket.org/dotnetrdf/dotnetrdf","reference": ["http://www.dotnetrdf.org/"]},{"title": "SemWeb","description": "SemWeb is a .NET library for working with Resource Description Framework (RDF) data. It provides classes for reading, writing, manipulating, and querying RDF.","tags": "RDF","language": "C#","license": null,"url": "http://razor.occams.info/code/semweb/","reference": null},{"title": "Redland RDF Application Framework","description": "The Redland RDF Application Framework is a set of free software libraries that provide support for RDF. It provides parser for RDF/XML, Turtle, N-triples, Atom, RSS; has a SPARQL and GRDDL implementation, and has language interfaces to C#, Python, Obj-C, Perl, PHP, Ruby, Java and Tcl","tags": "RDF; Turtle","language": null,"license": null,"url": "http://librdf.org/","reference": null},{"title": "Python的自然语言工具包NLTK(Natural Language Toolkit)","description": "NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and an active discussion forum.","tags": "natural language processing; text analytics","language": "Python","license": "Apache License Version 2.0","url": "https://github.com/nltk/nltk","reference": ["http://www.nltk.org/"]},{"title": "LinqToRdf","description": "LinqToRdf is a Semantic Web framework for .NET. It provides an easy way to integrate Semantic Web queries into your software. At the core of the system sits a LINQ query provider (like LINQ to SQL) that converts your queries into the SPARQL query language. You don't have to know that much SPARQL or RDF to be able to use it. It also provides a UML-style design surface allowing you to create RDF files, and to generate compatible C# code to work with the RDF.","tags": "LINQ; RDF","language": "C#","license": null,"url": "http://code.google.com/p/linqtordf/","reference": null},{"title": "雅虎的开源语义数据Web爬虫:Anthelion","description": "Anthelion is a plugin for Apache Nutch to crawl semantic annotations within HTML pages. Anthelion是为了更好地爬取嵌在HTML页面中的结构化数据而设计的,它采用了一种全新的方法来爬取含有丰富数据的页面上的内容:将线上学习和Bandit探索方法有效地结合起来,根据页面上下文以及从之前页面提取到的元数据反馈预测Web页面的数据丰富程度。 这种方法明显优于主题爬取(Focused Crawling)目前所采用的其他技术,极大地提升了爬取效率。","tags": "雅虎; 语义数据; Web爬虫","language": "Java","license": "Apache License Version 2.0","url": "https://github.com/yahoo/anthelion","reference": ["https://labs.yahoo.com/publications/6702/focused-crawling-structured-data"]},{"title": "语义网本体翻译计划","description": "Storing ontologies/vocabularies from the web. Wish anybody can translate some of them.","tags": "语义网; 本体","language": "RDF; Turtle","license": null,"url": "https://github.com/taurenshaman/semantic-web","reference": null},{"title": "语义图片(Semantic Image)","description": "A tool to write/read semantic information to images.","tags": "pngcs","language": "C#","license": null,"url": "https://github.com/taurenshaman/SemanticImage","reference": null},{"title": "微软的牛津计划","description": "微软牛津计划提供一组基于REST架构的API和SDK工具包,帮助开发者轻轻松松使用微软的自然数据理解能力为自己的解决方案增加智能服务。","tags": "SDK; API","language": null,"license": null,"url": "https://cn.projectoxford.ai","reference": null},{"title": "Open AI","description": "OpenAI is a non-profit artificial intelligence research company. Our goal is to advance digital intelligence in the way that is most likely to benefit humanity as a whole, unconstrained by a need to generate financial return. Since our research is free from financial obligations, we can better focus on a positive human impact. We believe AI should be an extension of individual human wills and, in the spirit of liberty, as broadly and evenly distributed as possible. The outcome of this venture is uncertain and the work is difficult, but we believe the goal and the structure are right. We hope this is what matters most to the best in the field.","tags": "non-profit artificial intelligence research company","language": null,"license": null,"url": "https://openai.com","reference": null},{"title": "楚辞","description": "基于语义网的中文开放知识平台","tags": "中文; 语义; 知识平台","language": null,"license": null,"url": "http://www.chuci.info","reference": null},{"title": "Semantic Web","description": "In addition to the classic “Web of documents” W3C is helping to build a technology stack to support a “Web of data,” the sort of data you find in databases. The ultimate goal of the Web of data is to enable computers to do more useful work and to develop systems that can support trusted interactions over the network. The term “Semantic Web” refers to W3C’s vision of the Web of linked data. Semantic Web technologies enable people to create data stores on the Web, build vocabularies, and write rules for handling data. Linked data are empowered by technologies such as RDF, SPARQL, OWL, and SKOS.","tags": "W3C; RDF; SPARQL; OWL; SKOS","language": null,"license": null,"url": "http://www.w3.org/standards/semanticweb/","reference": null},{"title": "DOAP","description": "Description of a project","tags": "DOAP","language": null,"license": null,"url": "http://trac.usefulinc.com/doap","reference": null}],"template": "bookmark"
}


这篇关于格式化数据#3:有关逻辑推理/语义的资源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824967

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核