Elasticsearch:ES|QL 入门 - Python Notebook

2024-03-19 05:28

本文主要是介绍Elasticsearch:ES|QL 入门 - Python Notebook,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据丰富在本笔记本中,你将学习 Elasticsearch 查询语言 (ES|QL) 的基础知识。 你将使用官方 Elasticsearch Python 客户端。

你将学习如何:

  • 运行 ES|QL 查询
  • 使用处理命令
  • 对表格进行排序
  • 查询数据
  • 链式处理命令
  • 计算值
  • 计算统计数据
  • 访问列
  • 创建直方图
  • 丰富数据
  • 处理数据

⚠️ 不要在生产环境中使用 ES|QL。 此功能处于技术预览阶段,可能会在未来版本中更改或删除。 Elastic 将努力解决任何问题,但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。ES|QL 将在 8.13 正式发布(以官方发布为准)。

在一下的展示中,我将使用 Elastic Stack 8.12 来进行展示。

安装

安装 Elasticsarch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,请参考如下的链接来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch
  • Kibana:如何在 Linux,MacOS 及 Windows上安装 Elastic 栈中的 Kibana

在安装的时候,我们选择 Elastic Stack 8.x 来进行安装。特别值得指出的是:ES|QL 只在 Elastic Stack 8.11 及以后得版本中才有。你需要下载 Elastic Stack 8.11 及以后得版本来进行安装。

在首次启动 Elasticsearch 的时候,我们可以看到如下的输出:

我们需要记下 Elasticsearch 超级用户 elastic 的密码。

我们还需要安装 Python 相关的包:

pip3 install elasticsearch
$ pip3 list | grep elasticsearch
elasticsearch               8.12.1

创建环境变量

我们在项目的根目录下创建如下的 .env 文件:

.env

ES_USER="elastic"
ES_PASSWORD="q2rqAIphl-fx9ndQ36CO"
ES_ENDPOINT="localhost"

 你需要根据自己的 Elasticsearch 的配置来修改上面的值。

创建应用

在项目的根目录下打入如下的命令:

jupyter notebook

拷贝 Elasticsearch 证书

我们把 Elasticsearch 的证书拷贝到当前的项目根目录下:

cp ~/elastic/elasticsearch-8.12.0/config/certs/http_ca.crt .

你需要根据自己的安装目录进行相应的修改。

导入包并连接到 Elasticsearch

from dotenv import load_dotenv
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
import osload_dotenv()ES_USER = os.getenv("ES_USER")
ES_PASSWORD = os.getenv("ES_PASSWORD")
ES_ENDPOINT = os.getenv("ES_ENDPOINT")url = f"https://{ES_USER}:{ES_PASSWORD}@{ES_ENDPOINT}:9200"es = Elasticsearch(hosts=[url], ca_certs = "./http_ca.crt", verify_certs = True
)print(es.info())

添加 sample data 到 Elasticsearch 中

在为示例数据集建立索引之前,让我们使用正确的映射创建一个名为 sample_data 的索引。

index_name = "sample_data"mappings = {"mappings": {"properties": {"client_ip": {"type": "ip"}, "message": {"type": "keyword"}}}
}# Create the index
if not es.indices.exists(index=index_name):es.indices.create(index=index_name, body=mappings)

接下来,我们使用 Elasticsearch Python 客户端的 bulk helpers 来索引数据:

# Documents to be indexed
documents = [{"@timestamp": "2023-10-23T12:15:03.360Z","client_ip": "172.21.2.162","message": "Connected to 10.1.0.3","event_duration": 3450233,},{"@timestamp": "2023-10-23T12:27:28.948Z","client_ip": "172.21.2.113","message": "Connected to 10.1.0.2","event_duration": 2764889,},{"@timestamp": "2023-10-23T13:33:34.937Z","client_ip": "172.21.0.5","message": "Disconnected","event_duration": 1232382,},{"@timestamp": "2023-10-23T13:51:54.732Z","client_ip": "172.21.3.15","message": "Connection error","event_duration": 725448,},{"@timestamp": "2023-10-23T13:52:55.015Z","client_ip": "172.21.3.15","message": "Connection error","event_duration": 8268153,},{"@timestamp": "2023-10-23T13:53:55.832Z","client_ip": "172.21.3.15","message": "Connection error","event_duration": 5033755,},{"@timestamp": "2023-10-23T13:55:01.543Z","client_ip": "172.21.3.15","message": "Connected to 10.1.0.1","event_duration": 1756467,},
]# Prepare the actions for the bulk API using list comprehension
actions = [{"_index": index_name, "_source": doc} for doc in documents]# Perform the bulk index operation and capture the response
success, failed = bulk(es, actions)if failed:print(f"Some documents failed to index: {failed}")
else:print(f"Successfully indexed {success} documents.")

我们可以在 Kibana 中进行查看:

取消默认的 500 limit 警告

# Suppress specific Elasticsearch warnings about default limit of [500] that pollute responsesimport warnings
from elasticsearch import ElasticsearchWarningwarnings.filterwarnings("ignore", category=ElasticsearchWarning)

格式化响应为可以阅读的格式

# Format response to return human-readable tablesdef format_response(response_data):column_names = [col["name"] for col in response_data["columns"]]column_widths = [max(len(name),max((len(str(row[i]) if row[i] is not None else "None")for row in response_data["values"]),default=0,),)for i, name in enumerate(column_names)]row_format = " | ".join(["{:<" + str(width) + "}" for width in column_widths])print(row_format.format(*column_names))print("-" * sum(column_widths) + "-" * (len(column_widths) - 1) * 3)for row in response_data["values"]:# Convert None values in the row to "None" before formattingformatted_row = [(str(cell) if cell is not None else "None") for cell in row]print(row_format.format(*formatted_row))

你的第一个 ES|QL 查询

每个 ES|QL 查询都以源命令开头。 源命令会生成一个表,通常包含来自 Elasticsearch 的数据。

FROM source 命令返回一个表,其中包含来自数据流、索引或别名的文档。 结果表中的每一行代表一个文档。 此查询从 sample_data 索引中返回最多 500 个文档:

esql_query = "FROM sample_data"response = es.esql.query(query=esql_query)
format_response(response)

每列对应一个字段,并且可以通过该字段的名称进行访问。

ℹ️ ES|QL 关键字不区分大小写。 FROM sample_data 与 from sample_data 相同。

处理命令

源命令后面可以跟一个或多个处理命令,用竖线字符分隔:|。 处理命令通过添加、删除或更改行和列来更改输入表。 处理命令可以执行过滤、投影、聚合等。

例如,你可以使用 LIMIT 命令来限制返回的行数,最多为 10,000 行:

esql_query = """
FROM sample_data
| LIMIT 3
"""response = es.esql.query(query=esql_query)
format_response(response)

对表格进行排序

另一个处理命令是 SORT 命令。 默认情况下,FROM 返回的行没有定义的排序顺序。 使用 SORT 命令对一列或多列上的行进行排序:

esql_query = """
FROM sample_data
| SORT @timestamp DESC
"""response = es.esql.query(query=esql_query)
format_response(response)

查询数据

使用 WHERE 命令来查询数据。 例如,要查找持续时间超过 5 毫秒的所有事件:

esql_query = """
FROM sample_data
| WHERE event_duration > 5000000
"""response = es.esql.query(query=esql_query)
format_response(response)

WHERE 支持多个运算符。

例如,你可以使用 LIKE 对消息列运行通配符查询:

esql_query = """
FROM sample_data
| WHERE message LIKE "Connected*"
"""response = es.esql.query(query=esql_query)
format_response(response)

更多处理命令

还有许多其他处理命令,例如用于保留或删除列的 KEEP 和 DROP、用于使用 Elasticsearch 中索引的数据丰富表的 ENRICH 以及用于处理数据的 DISSECT 和 GROK。 有关概述,请参阅处理命令。

链式处理命令

你可以链接处理命令,并用竖线字符分隔:|。 每个处理命令都作用于前一个命令的输出表。 查询的结果是最终处理命令生成的表。

以下示例首先根据 @timestamp 对表进行排序,然后将结果集限制为 3 行:

esql_query = """
FROM sample_data
| SORT @timestamp DESC
| LIMIT 3
"""response = es.esql.query(query=esql_query)
format_response(response)

ℹ️ 处理命令的顺序很重要。 首先将结果集限制为 3 行,然后再对这 3 行进行排序,很可能会返回与此示例不同的结果,其中排序在限制之前。

计算值

使用 EVAL 命令将包含计算值的列追加到表中。 例如,以下查询附加一个 duration_ms 列。 该列中的值是通过将 event_duration 除以 1,000,000 计算得出的。 换句话说: event_duration 从纳秒转换为毫秒。

esql_query = """
FROM sample_data
| EVAL duration_ms = event_duration/1000000.0
"""response = es.esql.query(query=esql_query)
format_response(response)

EVAL 支持多种函数。 例如,要将数字四舍五入为最接近指定位数的数字,请使用 ROUND 函数:

esql_query = """
FROM sample_data
| EVAL duration_ms = ROUND(event_duration/1000000.0, 1)
"""response = es.esql.query(query=esql_query)
format_response(response)

计算统计数据

你还可以使用 ES|QL 来聚合数据。 使用 STATS ... BY 命令计算统计数据。

例如,计算中位持续时间:

esql_query = """
FROM sample_data
| STATS median_duration = MEDIAN(event_duration)
"""response = es.esql.query(query=esql_query)
format_response(response)

你可以使用一个命令计算多个统计数据:

esql_query = """
FROM sample_data
| STATS median_duration = MEDIAN(event_duration), max_duration = MAX(event_duration)
"""response = es.esql.query(query=esql_query)
format_response(response)

使用 BY 按一列或多列对计算的统计数据进行分组。 例如,要计算每个客户端 IP 的中位持续时间:

esql_query = """
FROM sample_data
| STATS median_duration = MEDIAN(event_duration) BY client_ip
"""response = es.esql.query(query=esql_query)
format_response(response)

访问列

你可以通过名称访问列。 如果名称包含特殊字符,则需要用反引号(`)引起来。

为 EVAL 或 STATS 创建的列分配显式名称是可选的。 如果不提供名称,则新列名称等于函数表达式。 例如:

esql_query = """
FROM sample_data
| EVAL event_duration/1000000.0
"""response = es.esql.query(query=esql_query)
format_response(response)

在此查询中,EVAL 添加一个名为 event_duration/1000000.0 的新列。 由于其名称包含特殊字符,因此要访问此列,请用反引号引用它:

esql_query = """
FROM sample_data
| EVAL event_duration/1000000.0
| STATS MEDIAN(`event_duration/1000000.0`)
"""
response = es.esql.query(query=esql_query)
format_response(response)

创建直方图

为了跟踪一段时间内的统计数据,ES|QL 允许你使用 AUTO_BUCKET 函数创建直方图。 AUTO_BUCKET 创建人性化的存储桶大小,并为每行返回一个与该行所属的结果存储桶相对应的值。

例如,要为 10 月 23 日的数据创建每小时存储桶:

esql_query = """
FROM sample_data
| KEEP @timestamp
| EVAL bucket = AUTO_BUCKET (@timestamp, 24, "2023-10-23T00:00:00Z", "2023-10-23T23:59:59Z")
"""
response = es.esql.query(query=esql_query)
format_response(response)

将 AUTO_BUCKET 与 STATS ... BY 结合起来创建直方图。 例如,要计算每小时的事件数:

esql_query = """
FROM sample_data
| KEEP @timestamp, event_duration
| EVAL bucket = AUTO_BUCKET (@timestamp, 24, "2023-10-23T00:00:00Z", "2023-10-23T23:59:59Z")
| STATS COUNT(*) BY bucket
"""
response = es.esql.query(query=esql_query)
format_response(response)

或每小时的中位持续时间:

esql_query = """
FROM sample_data
| KEEP @timestamp, event_duration
| EVAL bucket = AUTO_BUCKET (@timestamp, 24, "2023-10-23T00:00:00Z", "2023-10-23T23:59:59Z")
| STATS median_duration = MEDIAN(event_duration) BY bucket
"""
response = es.esql.query(query=esql_query)
format_response(response)

丰富数据

ES|QL 使你能够使用 ENRICH 命令使用 Elasticsearch 中索引的数据来丰富表。

ℹ️ 在使用 ENRICH 之前,你首先需要创建并执行丰富策略。 我们在 ela.st/ql 提供了一个演示环境,其中已经创建并执行了名为 clientip_policy 的丰富策略,如果你只是想看看它是如何工作的。

以下请求创建并执行名为 clientip_policy 的策略。 该策略将 IP 地址链接到环境(“Development”、“QA” 或 “Production”)。

# Define the mapping
mapping = {"mappings": {"properties": {"client_ip": {"type": "keyword"}, "env": {"type": "keyword"}}}
}# Create the index with the mapping
es.indices.create(index="clientips", body=mapping)# Prepare bulk data
bulk_data = [{"index": {}},{"client_ip": "172.21.0.5", "env": "Development"},{"index": {}},{"client_ip": "172.21.2.113", "env": "QA"},{"index": {}},{"client_ip": "172.21.2.162", "env": "QA"},{"index": {}},{"client_ip": "172.21.3.15", "env": "Production"},{"index": {}},{"client_ip": "172.21.3.16", "env": "Production"},
]# Bulk index the data
es.bulk(index="clientips", body=bulk_data)# Define the enrich policy
policy = {"match": {"indices": "clientips","match_field": "client_ip","enrich_fields": ["env"],}
}# Put the enrich policy
es.enrich.put_policy(name="clientip_policy", body=policy)# Execute the enrich policy without waiting for completion
es.enrich.execute_policy(name="clientip_policy", wait_for_completion=True)

创建并执行策略后,你可以将其与 ENRICH 命令一起使用:

esql_query = """
FROM sample_data
| KEEP @timestamp, client_ip, event_duration
| EVAL client_ip = TO_STRING(client_ip)
| ENRICH clientip_policy ON client_ip WITH env
"""
response = es.esql.query(query=esql_query)
format_response(response)

你可以在后续命令中使用 ENRICH 命令添加的新 env 列。 例如,要计算每个环境的中位持续时间:

esql_query = """
FROM sample_data
| KEEP @timestamp, client_ip, event_duration
| EVAL client_ip = TO_STRING(client_ip)
| ENRICH clientip_policy ON client_ip WITH env
| STATS median_duration = MEDIAN(event_duration) BY env
"""
response = es.esql.query(query=esql_query)
format_response(response)

有关使用 ES|QL 进行数据丰富的更多信息,请参阅数据丰富。

处理数据

你的数据可能包含非结构化字符串,你希望对其进行结构化以便更轻松地分析数据。 例如,示例数据包含如下日志消息:

Connected to 10.1.0.3

通过从这些消息中提取 IP 地址,你可以确定哪个 IP 接受了最多的客户端连接。

要在查询时构建非结构化字符串,你可以使用 ES|QL DISSECT 和 GROK 命令。 DISSECT 的工作原理是使用基于分隔符的模式分解字符串。 GROK 的工作原理类似,但使用正则表达式。 这使得 GROK 更强大,但通常也更慢。

在这种情况下,不需要正则表达式,因为 message 很简单:“Connected to ”,后跟服务器 IP。 要匹配此字符串,你可以使用以下 DISSECT 命令:

esql_query = """
FROM sample_data
| DISSECT message "Connected to %{server_ip}"
"""
response = es.esql.query(query=esql_query)
format_response(response)

这会将 server_ip 列添加到具有与此模式匹配的 message 的那些行。 对于其他行,server_ip 的值为空。

你可以在后续命令中使用 DISSECT 命令添加的新 server_ip 列。 例如,要确定每个服务器已接受多少个连接:


esql_query = """
FROM sample_data
| WHERE STARTS_WITH(message, "Connected to")
| DISSECT message "Connected to %{server_ip}"
| STATS COUNT(*) BY server_ip
"""
response = es.esql.query(query=esql_query)
format_response(response)

ℹ️ 要了解有关使用 ES|QL 进行数据处理的更多信息,请参阅使用 DISSECT 和 GROK 进行数据处理。

了解更多,请阅读 “Elasticsearch:ES|QL 查询展示”。

最终的 Notebook 可以在地址 https://github.com/liu-xiao-guo/esql/blob/main/esql-getting-started.ipynb 下载。

这篇关于Elasticsearch:ES|QL 入门 - Python Notebook的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824938

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以