【机器学习小论文】sklearn随机森林RandomForestRegressor代码及调参

本文主要是介绍【机器学习小论文】sklearn随机森林RandomForestRegressor代码及调参,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

前一篇是写的线性回归模型,这一篇为随机森林,下一篇为xgboost。

二、算法简介

2.1 随机森林概述

随机森林是集成学习方法bagging类中的翘楚。与集成学习boosting类的GBDT分庭抗礼。

bagging类集成学习采用的方法是:用部分数据 or 部分特征 or 多个算法 训练一些模型;然后再组合这些模型,对于分类问题采用投票多数表决,回归问题采用求平均。

各个模型训练之间互不影响,天生就适合并行化处理。在如今大数据时代背景下很有诱惑力。
主要效果:重点关注降低方差,防止过拟合。
适用于高噪声数据 (相对于GBDT等boosting类)

2.2 随机森林框架参数

在scikit-learn中,RF的分类器是RandomForestClassifier,回归器是RandomForestRegressor。和GBDT的调参类似,RF需要调参的参数也包括两部分,第一部分是Bagging框架的参数,第二部分是CART决策树的参数。具体的参数参考随机森林分类器的函数原型

classsklearn.ensemble.RandomForestRegressor(
        n_estimators=10, criterion='gini',
        max_depth=None,min_samples_split=2, 
        min_samples_leaf=1, min_weight_fraction_leaf=0.0,
        max_features='auto', max_leaf_nodes=None,
        min_impurity_split=1e-07,bootstrap=True,
        oob_score=False, n_jobs=1, 
        random_state=None, verbose=0,
        warm_start=False, class_weight=None)

  • (1)n_estimators:

也就是弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易过拟合,n_estimators太大,又容易欠拟合,一般选择一个适中的数值。默认是100。

  • (2)oob_score:

即是否采用袋外样本来评估模型的好坏。默认识False。个人推荐设置为True,因为袋外分数反应了一个模型拟合后的泛化能力。

  • (3) criterion:

即CART树做划分时对特征的评价标准。分类模型和回归模型的损失函数是不一样的。分类RF对应的CART分类树默认是基尼系数gini,另一个可选择的标准是信息增益。回归RF对应的CART回归树默认是均方差mse,另一个可以选择的标准是绝对值差mae。一般来说选择默认的标准就已经很好的。

再把调参具体说下:

1、首先先调既不会增加模型复杂度,又对模型影响最大的参数n_estimators(学习曲线)

2、找到最佳值后,调max_depth(单个网格搜索,也可以用学习曲线)  

一般根据数据的大小来进行一个试探,乳腺癌数据很小,所以可以采用1~10,或者1~20这样的试探但对于像digit recognition那样的大型数据来说,我们应该尝试30~50层深度(或许还不足够)

3、接下来依次对各个参数进行调参。

注:对于大型数据集,max_leaf_nodes可以尝试从1000来构建,先输入1000,每100个叶子一个区间,再逐渐缩小范围

对于min_samples_splitmin_samples_leaf,一般是从他们的最小值开始向上增加10或20,面对高维度高样本量数据,如果不放心,也可以直接+50,对于大型数据,可能需要200~300的范围,如果调整的时候发现准确率无论如何都上不来,那可以放心大胆调一个很大的数据,大力限制模型的复杂度

三、代码及结果分析

随机森林中使用了k折交叉验证,并且使用了scikit-learn的网格搜索

from sklearn.impute import SimpleImputer
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import KFold
from sklearn.metrics import r2_score
from sklearn.preprocessing import *
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
import importlib
from sklearn.model_selection import GridSearchCV
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import datetime
from numpy import nan as NaN
from sklearn import metrics
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = Falsestarttime = datetime.datetime.now()
df_merge = pd.read_csv('D:/myCode/spark/spark_ML/df_merge.csv')
# 打乱数据顺序
df_merge=df_merge.reindex(np.random.permutation(df_merge.index))#1.用常数填充
df_merge = df_merge.replace(np.nan, 0)# 准备训练、测试集
X = df_merge.drop(['成交价'],axis=1)
y = df_merge['成交价']
# xtrain,xtest,ytrain,ytest = train_test_split(X,y,test_size=0.2,random_state=42)    # random_state=42
# xtrain = xtrain.astype(np.float64)
# xtest = xtest.astype(np.float64)
# k折交叉拆分器 - 用于网格搜索
# cv = KFold(n_splits=3,shuffle=True)# print(np.isnan(df_merge).any())# Y_train=df_merge['成交价']
# X_train=df_merge.drop(['成交价'],axis=1)xtrain,xtest,ytrain,ytest = train_test_split(X,y,test_size=0.2,random_state=42)    # random_state=42
xtrain = xtrain.astype(np.float64)
xtest = xtest.astype(np.float64)    
# 调用scikit-learn的网格搜索,传入参数选择范围,并且制定随机森林回归算法,cv = 5表示5折交叉验证
# param_grid = {"n_estimators":[5,10,50,100,200,500],"max_depth":[5,10,50,100,200,500]}
param_grid = {"n_estimators":[500,800,1000],"max_depth":[8,9,10]}
grid_search = GridSearchCV(RandomForestRegressor(),param_grid,cv = 3)# 让模型对训练集和结果进行拟合
grid_search.fit(xtrain,ytrain)y_hat = grid_search.predict(xtest)
# y_test与y_hat的可视化
# 设置图片尺寸
plt.figure(figsize=(10, 6))
# 创建t变量
t = np.arange(len(xtest))
# 绘制y_test曲线
plt.plot(t, ytest, 'r', linewidth=2, label='真实值')
# 绘制y_hat曲线
plt.plot(t, y_hat, 'g', linewidth=2, label='预测值')
# 设置图例
plt.legend()
plt.show()# 拟合优度R2的输出方法
print("r2:", grid_search.score(xtest, ytest))# 用Scikit_learn计算MAE
print("MAE:", metrics.mean_absolute_error(ytest, y_hat))# 用Scikit_learn计算MSE
print("MSE:", metrics.mean_squared_error(ytest, y_hat))# 用Scikit_learn计算RMSE
print("RMSE:", np.sqrt(metrics.mean_squared_error(ytest, y_hat)))# 打印前20个预测值
print("*"*10)
print("真实值:")
print(ytest[0:20])
print("预测值:")
print(y_hat[0:20])
# y_hat[0:9]
print("*"*10)
endtime = datetime.datetime.now()
print (endtime - starttime)

结果:

r2: 0.8848928107136049
MAE: 37.974701393581306
MSE: 3806.7734679592963
RMSE: 61.699055648845196

运行时间:0:09:13.530739       9分多钟

如果再继续调参,修改param_grid = {"n_estimators":[500,800,1000],"max_depth":[8,9,10],"oob_score":[False], "n_jobs":[-1]},那么结果其实差距不大, 但是运行时间大大减少,只有2分多钟

从结果看,明显比上次的线性回归模型准确多了,r2提高到了0.88,MSE的值也由8000多降到了不到4000,随机选择了几个预测值,感觉结果不错。理论上下次的xgboost模型会更好,毕竟进行了参数优化,肯定会有更好的结果。

    预测值       真实值
578.73191203     573
565.71750749     618
194.05789389     190
220.47973742     248
495.0728485      425
387.77640548     373
219.75210522     238
481.36157168     507
156.54966457     177
751.57122229     930
615.83101317     537
656.35241424     726
918.71174488    1046
140.72794847     121
311.45338042     266
315.48914039     344
458.29755206     410
435.66571209     390
437.06709882     413
312.27525411     269

 

这篇关于【机器学习小论文】sklearn随机森林RandomForestRegressor代码及调参的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824061

相关文章

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

VS Code中的Python代码格式化插件示例讲解

《VSCode中的Python代码格式化插件示例讲解》在Java开发过程中,代码的规范性和可读性至关重要,一个团队中如果每个开发者的代码风格各异,会给代码的维护、审查和协作带来极大的困难,这篇文章主... 目录前言如何安装与配置使用建议与技巧如何选择总结前言在 VS Code 中,有几款非常出色的 pyt

利用Python将PDF文件转换为PNG图片的代码示例

《利用Python将PDF文件转换为PNG图片的代码示例》在日常工作和开发中,我们经常需要处理各种文档格式,PDF作为一种通用且跨平台的文档格式,被广泛应用于合同、报告、电子书等场景,然而,有时我们需... 目录引言为什么选择 python 进行 PDF 转 PNG?Spire.PDF for Python

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工