新!PCA+DBO+K-means聚类,蜣螂优化算法DBO优化K-means,适合学习,也适合发paper。

2024-03-18 07:04

本文主要是介绍新!PCA+DBO+K-means聚类,蜣螂优化算法DBO优化K-means,适合学习,也适合发paper。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PCA+DBO+K-means聚类,蜣螂优化算法DBO优化K-means,适合学习,也适合发paper。

一、 蜣螂优化算法

摘要:受蜣螂滚球、跳舞、觅食、偷窃和繁殖等行为的启发,提出了一种新的基于种群的优化算法(Dung Beetle Optimizer, DBO)。新提出的DBO算法兼顾了全局探索和局部开发,具有收敛速度快和求解精度高的特点。采用一系列著名的数学测试函数(包括23个基准函数和29个CEC-BC-2017测试函数)来评估DBO算法的搜索能力。仿真实验结果表明,DBO算法在收敛速度、求解精度和稳定性方面均表现出与当前主流优化算法相当的性能。此外,采用Wilcoxon符号秩检验和Friedman检验对算法的实验结果进行评估,证明了DBO算法相对于当前流行的其他优化技术的优越性。为了进一步说明DBO算法的实际应用潜力,将DBO算法成功应用于3个工程设计问题。实验结果表明,所提DBO算法能够有效地处理实际应用问题。

文献来源:Dung beetle optimizer: a new meta-heuristic algorithm for global optimization。

DOI:10.1007/s11227-022-04959-6。

二、K-means聚类

K-means聚类算法是一种无监督学习算法,广泛应用于数据分析和机器学习的各个领域。其核心思想是将给定的样本集划分为K个簇,使得每个簇内的样本点尽可能紧密地聚集在一起,而不同簇之间的样本点则尽可能远离。以下是K-means聚类算法的主要优点:

简单直观:K-means算法原理简单易懂,容易实现,计算速度快,且聚类效果通常较好。

可解释性强:算法的结果具有明确的解释性,每个簇的中心点可以代表该簇的特征,有助于理解和分析数据。

适用于大规模数据集:K-means算法在处理大规模数据集时表现良好,能够高效地划分数据。

然而,K-means聚类算法也存在一些明显的缺点:

K值选择困难:K值是事先给定的,如何选择合适的K值是一个难题。K值选择不当可能导致聚类结果不合理,难以反映数据的真实结构。

对初始值敏感:K-means算法对初始簇中心的选择非常敏感。如果初始值选择得不好,可能会导致算法陷入局部最优解,而无法得到全局最优的聚类结果。

对异常值和噪声敏感:K-means算法对异常值和噪声的鲁棒性较差,这些值可能会影响簇中心的计算,导致聚类结果不准确。

不适合非凸形状簇:K-means算法基于距离度量进行聚类,因此对于非凸形状的簇可能无法得到理想的聚类效果。

距离度量方式选择:关于K-means聚类算法的距离度量方式,最常用的是欧氏距离。然而,除了欧氏距离外,K-means算法也可以使用其他距离度量方式,例如曼哈顿距离和马氏距离等。

三、主成分分析PCA

主成分分析(Principal Component Analysis),是一种常用的数据降维方法。它的主要思想是通过线性变换将原始的高维数据映射到一个低维空间中,同时尽可能地保留原始数据的主要特征信息。

具体来说,PCA降维的过程可以分为以下几个步骤:

数据标准化:首先,对原始数据进行标准化处理,消除不同特征之间的量纲差异,使得每个特征都具有相同的权重。

计算协方差矩阵:接着,计算标准化后数据的协方差矩阵。协方差矩阵反映了不同特征之间的相关性,是PCA降维的关键。

计算特征值和特征向量:对协方差矩阵进行特征分解,得到特征值和特征向量。特征值的大小代表了对应特征向量方向上的数据方差,即数据的离散程度。

选择主成分:根据特征值的大小,选择前k个最大的特征值对应的特征向量作为主成分。这些主成分代表了数据中的主要变化方向,能够最大程度地保留原始数据的信息。

数据投影:最后,将原始数据投影到选定的主成分上,得到降维后的数据。这个过程可以通过将原始数据乘以主成分矩阵来实现。

PCA降维的优点在于它简单易懂,计算效率高,且能够有效地降低数据的维度,减少计算复杂性和存储空间。同时,PCA降维还能够去除部分噪声和冗余特征,提高数据的可解释性和可视化效果。因此,PCA降维在数据分析、机器学习、图像处理等领域都有广泛的应用。需要注意的是,PCA降维是一种无监督学习方法,它并不考虑数据的标签信息。因此,在某些情况下,PCA降维可能会丢失一些与标签相关的信息。此外,PCA降维对于非线性数据的处理能力有限,对于复杂的数据结构可能需要采用其他降维方法。

四、PCA+DBO+ K-means聚类

✨ 核心亮点 ✨

降维至精华:我们首先使用PCA将复杂的数据集降维到2维,保留了数据的主要信息,使其可视化变得简单直观。

优化聚类:接着,采用蜣螂优化算法DBO对K-means聚类进行优化,利用轮廓系数信息构建目标函数,自动寻找最佳的聚类数量和距离度量,以达到最优的数据分组效果。

聚类数量k:可以修改聚类数量优化范围

选择三个距离度量进行优化:sqeuclidean(欧氏距离平方)、cityblock(Block距离,也叫绝对值距离)、cosine(夹角余弦)。

代码详细中文注释,高效管理,可读性和二次开发都很好,部分代码如下: 

clc; clear; close all;% 加载Excel数据
data = xlsread('数据.xlsx');% 假设全部列为特征数据
X = data;% 数据标准化
X_standardized = (X - mean(X)) ./ std(X);% 应用PCA进行降维
[coeff, score, latent, tsquared, explained] = pca(X_standardized);% 提取前两个主成分
Z = score(:, 1:2);% 初始化DBO参数
N = 10; % 种群数量
T = 50; % 最大迭代次数
LB=[2,1]; % 变量下界
UB=[20,3]; % 变量上界
nvars=length(LB);
fobj=@fitness;% 使用DBO优化算法优化K-means进行聚类,优化最佳聚类数和最佳距离度量
[fMin,index,Convergence_curve,pos]=DBO(N,T,LB,UB,nvars,fobj,data,Z); % 计算轮廓系数
sc_xishu = mean(silhouette(data, index'));% 确定独特的聚类数
a = unique(index);
op_cluster_num = length(a); % 优化后聚类个数
C = cell(1, length(a));% 将数据分配到对应聚类
for i = 1:length(a)C(1, i) = {find(index == a(i))};
end% 分类标签
legend_str = strsplit('类别1,类别2,类别3', ',');% 绘制每个聚类的数据点
for i = 1:op_cluster_numdata_cluster = Z(C{1, i}, :);plot(data_cluster(:, 1), data_cluster(:, 2), 'p', 'LineWidth', 2, 'MarkerSize', 5); hold on;
end% 确保图例中聚类标签的数量与实际相符
if(length(legend_str) < op_cluster_num)for i = length(legend_str):op_cluster_numlegend_str{1, i} = ['类别', num2str(i)];end
end% 设置图表属性
set(gca, 'FontSize', 12)
title('蜣螂优化算法DBO优化K-means')
axis tight
box on
xlabel('X')
ylabel('Y')
legend(legend_str)figure(2)
% 绘制收敛曲线
semilogy(Convergence_curve,'-r','LineWidth',2)
title('蜣螂优化算法DBO优化K-means收敛曲线')
xlabel('迭代次数');
ylabel('适应度值');
axis tight
box on
legend('DBO优化K-means')
set(gca, 'FontSize', 10)% 优化结果输出
distance_str={'sqeuclidean','cityblock','cosine'};
disp('蜣螂优化算法DBO优化K-means聚类: ');
disp(['最佳聚类数: ',num2str(round(pos(1)))])
disp(['最佳距离度量: ',distance_str{1,round(pos(2))}])

运行结果如下:

蜣螂优化算法DBO优化K-means结果:

蜣螂优化算法DBO优化K-means收敛曲线:

优化结果输出:

五、使用的数据

六、完整代码获取

PCA+DBO+K-means聚类

这篇关于新!PCA+DBO+K-means聚类,蜣螂优化算法DBO优化K-means,适合学习,也适合发paper。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821540

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.