DEiT中如何处理mask数据的?与MAE的不同

2024-03-18 05:20
文章标签 mask 数据 处理 不同 deit mae

本文主要是介绍DEiT中如何处理mask数据的?与MAE的不同,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在DeiT里面,是通过mask的方式,将mask+unmasked的patches输出进ViT中,但其实在下游任务输入的patches还是和训练时patches的数量N是一致的(encoder所有的patches)。

而MAE是在encoder中只encoder未被mask的patches

通过什么方式支持的?

  • 在处理文本时,可以根据最长的句子在批次中动态padding或截断长句子
  • 而在处理图像(如使用ViT)时,可以将图像划分为大小相等的patches,数量可以根据图像的大小动态变化。

在训练阶段,部分patches被mask为0,但是处理的所有patches加起来的总长度还是一样的。被mask的位置在模型内部仍然占位,保持了输入序列的“框架”。这样,即使实际参与计算的只是部分元素,模型也能够适应在推理时使用全部元素的情况。

具体的计算步骤如下:

  1. 确定mask哪些patches
  2. 将mask的patches位置设置为0
  3. 这些被mask和未被mask的所有patches一起被输入进attention模块
  4. 将被mask的patches的注意力分数手动设置为“无穷大负数”(-inf)
  5. 这些被mask的patches的softmax值就会变为0,也就意味着这些patches并未参与注意力的计算
import torch
import torch.nn as nn
import torch.nn.functional as Fclass MaskedSelfAttention(nn.Module):def __init__(self, embed_size):super(MaskedSelfAttention, self).__init__()self.query = nn.Linear(embed_size, embed_size)self.key = nn.Linear(embed_size, embed_size)self.value = nn.Linear(embed_size, embed_size)def forward(self, x, mask=None):Q = self.query(x)K = self.key(x)V = self.value(x)# 计算自注意力得分attention_scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(Q.size(-1), dtype=torch.float32))# 将mask值为0的位置在attention_scores中设置为一个非常大的负数attention_scores = attention_scores.masked_fill(mask == 0, float('-inf'))# 使得这些位置的softmax结果接近0attention_weights = F.softmax(attention_scores, dim=-1)# 算最终的注意力加权和output = torch.matmul(attention_weights, V)return output# 假设嵌入大小为512
embed_size = 512
# 创建一个mask,假设我们有4个patches,我们想要mask掉第2个和第4个patches
mask = torch.tensor([[1, 0, 1, 0]])
# 扩展mask维度以适应attention_scores的形状(假设批大小为1,序列长度为4),mask需要与attention_scores形状匹配,即(batch_size, 1, 1, seq_length)
mask = mask.unsqueeze(1).unsqueeze(2)# 初始化模型和数据
sa = MaskedSelfAttention(embed_size)
x = torch.randn(1, 4, embed_size)  # 假设有一个批大小为1,序列长度为4的输入output = sa(x, mask)
print(output)

这篇关于DEiT中如何处理mask数据的?与MAE的不同的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821290

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避