客户端服务器通过Socket API通信流程 通过源码角度分析 三握手四挥手都过程的状态改变 及 例如accept()connect()具体做了什么

本文主要是介绍客户端服务器通过Socket API通信流程 通过源码角度分析 三握手四挥手都过程的状态改变 及 例如accept()connect()具体做了什么,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先我们先说下网络编程API:

数据在网络上通信,通信的双方一个是 客户端, 一个是 服务器

更具体来说,不是 客户端和服务器这两个机器在  经由互联网   进行通信,

                       而是 客户端上的某一进程 与 服务器端的某一进程  进行通信。

因此,客户端与服务器间的通信  是  一个进程间通信,只不过通信的两个进程不在同一机器上。

所以进程间通信方式 实际上有 ①管道(命名管道、无名管道);②消息队列;③共享内存;④信号量;⑤信号;⑥套接字Socket 这6种方式

其中的 套接字Socket 通信就是指 不在同一机器上,需要经由网络进行通信的 进程间通信方式

【具体详见: XXXXX插入一条链接】--》链接内容就是socket 作为内河中的缓冲区,是如何被fd指向来接受梁金成穿来穿去的数据的


现在,客户端进程 与 服务器进程要通信,如何使用Socket套接字呢,需要以下流程:

不加任何IO复用技术的客户端与服务器之间数据的交换调用函数如下:

 使用epoll来监听的socket通信流程调用API如下:(图中只画了三次握手和传输数据,没画关闭连接阶段,,,)

 但,无论是哪种方式(无论是程序员自己写逻辑轮询监听文件描述符还是使用select\poll\epoll),客户端与服务器间建立连接【发生三次握手】的位置都是:connect()函数 与 accept()函数交互的位置,如下图所示:


首先,让我们了解下 三次握手四次挥手过程的状态转换 :

 连接建立阶段:

第一次握手:客户端的应用进程  向 服务器端 发出连接请求报文:发送连接请求后,客户端状态变为 "SYN_SENT"

请求报文内容为:其首部中:SYN值置为1 ;seq=x


第二次握手:服务器应用进程 响应 客户端的连接请求,向客户端发回 确认报文和连接请求 : 而后,服务器端的状态变为 "SYN_RECV"

请求报文内容为:其首部中:SYN值置为1,ACK值置为1 ;ack=x+1,seq=y。


第三次握手:客户端收到确认报文之后,通知上层应用进程连接已建立,并向服务器发出确认报文:而后,客户端状态变为 "ESTABLISHED"

请求报文内容为:其首部中:ACK值置为1,ack=y+1

(服务器端 收到 第三次握手客户端发来的确认报文,状态也变为 "ESTABLISHED")


至此,TCP连接就建立了,客户端和服务器可以愉快地玩耍了。只要通信双方没有一方发出连接释放的请求,连接就将一直保持。
 

 连接释放阶段:(假设客户端主动关闭连接)

第一次挥手:客户端发送一个断开连接包(FIN包):而后,客户端状态变为 "FIN_WAIT_1"

请求报文内容为:其首部中:FIN值置为1,ACK值置为1 ;ack=... ,seq=... 。

(当然,在fin包之前发送出去的数据,如果没有收到对应的ack确认报文,主动关闭方依然会重发这些数据)

第二次挥手:服务器端收到FIN包后,发送一个确认包给对方:而后,服务器端的状态变为 "CLOSE_WAIT"

请求报文内容为:其首部中:ACK值置为1 ;ack=... 。


第三次挥手:服务器端发送一个FIN包,告诉客户端我的数据也发送完了,不会再给你发数据了:而后,服务器端的状态变为 "LAST_ACK"

请求报文内容为:其首部中:FIN 值置为1,ACK值置为1 ;ack=...


第四次挥手:客户端 接收到 服务器端发来的FIN包,发送一个ACK给服务器端,状态转换为:"TIME_WAIT"

服务器端接收到 客户端发来的ACK包,断开与客户端的连接

客户端处于 “TIME_WAIT”状态 2MSL 时间后,也断开连接,进入"CLOSE"状态

至此,完成四次挥手




三次握手发生在 connect()函数 和  accept() 函数中,这俩函数具体干了些什么?

服务器端接收到 connect()函数实现的对服务器端的连接请求后,accept()函数与之交互:

connect()函数调用时:

由于服务器端的ip和port都已经作为地址参数传入给connect(),

因此,第一次握手时,connect()函数去封装好一个SYN包,并且在该SYN包中也写明了 seq内容、window 大小等一系列后续数据传输的参数信息,并将自己的状态置为 SYN_SEND;

第二次握手时,服务器端接收到请求:会新建一个socket (为方便称呼我们称之为 new_socket),并将客户端的ip和端口号写入该新建的socket中,而后,返回 连接请求SYN包和ACK;

第三次握手:客户端接收到应答:判断自己socket()此时状态是“SYN_SEND”,而后接受服务器端返回的ACK包,解析出ACK应答包中的通信socket的具体内容,例如window大小等,并把服务器端的ip和port写入到自己的socket中,为以后的信息传递做准备


## 一个疑问:服务器端调用accept()生成新的new_socket与客户端通信,那么,客户端访问服务器端时,它的端口号还会是客户端用于监听的socket的80端口吗?

答案是:是的,客户端在后续的数据传输中还是在访问 80端口。因为 accept 函数新创建的socket对象其实并没有进行端口的占有,而是复制了socetfd的本地IP和端口号,并且也向其中记录了连接过来的客户端的IP和端口号

## 那,多个客户端建立了多个连接请求,都在访问80端口,服务器端怎么知道那个请求时对应哪个客户端呢?

答案是:这是因为,socket不仅是一个进程间通信缓冲区,它还包含了一个用于记录控制信息的结构体,其中记录了这块缓冲区用于承担源和目的2个进程 其进程ip和端口号

因此,客户端A访问ip和80端口,服务器端对80端口的监听程序(如epoll)就会发现有数据到来,接着就会判断,这个分析这个数据包内容:

若是一个未完成三次握手连接的新客户端在发送SYN包请求连接,则,调用accept() 来新建new_socket()与之进行三次握手操作

若是一个已完成三次握手连接的客户端发送来的数据,那么就根据该数据包 则将数据放入接收缓冲区(TCP/IP协议栈 维护一个接收发送数据的缓冲区) ,当该数据包 的接受进程KK需要读数据的时候,通过调用了recv() 或read() ,进程KK根据其socket中记录的源目的ip和端口,从缓冲区中轻易找到该数据包,(并读到自己的socket空间中【这块不确定,要不别说了】)

这就是为啥服务器端 即使 就用一个端口 也 不会弄混 不同客户端发来的请求和处理的消息。

如下图所示:

服务器监听8000端口,在未建立连接时,可以看到在监听8000

在通过一个客户端建立连接后,可以看到建立了一条连接,服务器端的端口号是8000,监听的还是8000。

在连接一个客户端,可以看到建立了两条连接,服务器端都是使用8000,监听的还是8000。

这篇关于客户端服务器通过Socket API通信流程 通过源码角度分析 三握手四挥手都过程的状态改变 及 例如accept()connect()具体做了什么的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821057

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

k8s中实现mysql主备过程详解

《k8s中实现mysql主备过程详解》文章讲解了在K8s中使用StatefulSet部署MySQL主备架构,包含NFS安装、storageClass配置、MySQL部署及同步检查步骤,确保主备数据一致... 目录一、k8s中实现mysql主备1.1 环境信息1.2 部署nfs-provisioner1.2.

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常