【PID优化】基于萤火虫算法PID控制器优化设计含Matlab源码

2024-03-17 11:59

本文主要是介绍【PID优化】基于萤火虫算法PID控制器优化设计含Matlab源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 内容介绍

PID控制器仍是现今应用最广的控制器.但由于其被控对象具有高阶非线性等特点,传统的PID参数整定方法使系统易出现超调,震荡,控制系统性能变差等问题.

2 部分代码

%% 清空环境变量

clc;

clear;

%% 初始化参数

domx = [-3, 3; -3, 3];       % 定义域

rho = 0.9;                   % 荧光素挥发因子

gamma = 0.1;                 % 适应度提取比例

beta = 0.58;                 % 邻域变化率

nt = 6;                      % 邻域阀值(邻域萤火虫数)

s = 0.03;                    % 步长

iot0 = 400;                  % 荧光素初始浓度

rs = 3;                      % 感知半径

r0 = 3;                      % 决策半径

m = size(domx, 1);           % 函数空间维数

n = 50;                      % 萤火虫数量

gaddress = zeros(n, m);      % 分配萤火虫地址空间

gvalue = zeros(n, 1);        % 分配适应度存放空间

ioti = zeros(n, 1);          % 分配荧光素存放空间

rdi = zeros(n, 1);           % 分配萤火虫决策半径存放空间

%% 萤火虫常量初始化

% 初始化地址

for i = 1:m

    gaddress(:, i) = domx(i, 1)+(domx(i, 2)-domx(i, 1))*rand(n, 1);

end

% 初始化荧光素浓度

ioti(:, 1) = iot0;

% 初始化决策半径

rdi(:, 1) = r0;

iter_max = 500;            % 最大迭代次数

t = 1;                     % 迭代计数器

yy = zeros(iter_max, 1);   % 各代最优解

%% 迭代寻优

while t <= iter_max

    % 更新荧光素浓度

    ioti = (1-rho)*ioti+gamma*fun(gaddress);

    % 各萤火虫移动过程开始

    for i = 1:n

        % 决策半径内找更优点

        Nit = [];                 % 存放萤火虫序号

        for j = 1:n

            if norm(gaddress(j, :)-gaddress(i, :)) < rdi(i) && ioti(i, 1) < ioti(j, 1)

                Nit(numel(Nit)+1) = j;

            end

        end

        % 找下一步移动的点开始

        if ~isempty(Nit)           

            Nitioti = ioti(Nit, 1);              % 选出Nit荧光素

            SumNitioti = sum(Nitioti);           % Nit荧光素和

            Molecular = Nitioti-ioti(i, 1);      % 分子

            Denominator = SumNitioti-ioti(i, 1); % 分母

            Pij = Molecular./Denominator;   % 计算Nit各元素被选择概率

            Pij = cumsum(Pij);        % 累计

            Pij = Pij./Pij(end);      % 归一化

            Pos = find(rand < Pij);   % 确定位置

            j = Nit(Pos(1));          % 确定j的位置

            % 萤火虫i向j移动一小步

            gaddress(i, :) = gaddress(i, :)+s*(gaddress(j, :)-gaddress(i, :))/norm(gaddress(j, :)-gaddress(i, :));

            % 边界处理(限制范围)

            gaddress(i, :) = min(gaddress(i, :), domx(1, 2));        

            gaddress(i, :) = max(gaddress(i, :), domx(1, 1)); 

            % 更新决策半径

            rdi(i) = rdi(i)+beta*(nt-length(Nit));

            if rdi(i, 1) < 0

                rdi(i, 1) = 0;

            end

            if rdi(i, 1) > rs

                rdi(i, 1) = rs;

            end

        end

    end

    % 每代最优解存入yy数组内

    yy(t) = max(fun(gaddress));

    % 迭代次数+1

    t = t+1;

end

%% 结果显示

gvalue = fun(gaddress);               % 求各个萤火虫的值

disp('最大值为:')

num = find(gvalue == max(gvalue));    % 最大值序号

MaxValue = max(gvalue)

disp('最优解为:')

BestAddress = gaddress(num, :)

figure;

plot(yy, 'r', 'linewidth', 2)

xlabel ('迭代次数'); ylabel( '函数值');

title( 'GSO算法各代最优解变化');

3 运行结果

4 参考文献

[1]李远梅, 张宏立. 基于改进萤火虫算法PID控制器参数优化研究[J]. 计算机仿真, 2015, 32(9):4.

[2]李恒, 郭星, 李炜. 基于改进的萤火虫算法的PID控制器参数寻优[J]. 计算机应用与软件, 2017, 34(7):4.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机、雷达通信、无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

这篇关于【PID优化】基于萤火虫算法PID控制器优化设计含Matlab源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818887

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.