在线大数据学习效果怎么样,在线学习过程性评价系统工作流程分为哪几步?

本文主要是介绍在线大数据学习效果怎么样,在线学习过程性评价系统工作流程分为哪几步?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在线大数据学习效果怎么样?在线学习过程性评价系统工作流程总共分为六个大的步骤,充分说明了大数据支持下的过程性评价嵌入在线学习之中的路径和方法。

在线大数据学习效果怎么样?

第一步,学习者开展在线学习活动,并随之生成学习行为的数据,经过在线学习内容与服务模块,这些数据将被贴附时间戳标记。

第二步,数据按照预定义结构存入学习者学习状态信息库。

第三步,在线学习过程性评价引擎从学习者特征信息库和学习状态信息库中收集数据,依据不同的评价指标和内容,选择不同的方法和模型,对学习者的学习实施过程性评价。

第四步,个性化诊断与引导引擎根据过程性评价引擎分析的结果,通过内容与服务模块为学习者提供有针对性的在线学习诊断服务,预测未来表现并发现潜在的问题,实施个性化引导。

第五步,过程性评价引擎的分析结果被同步传递给评价信息可视化仪表盘,供在线教学者、学伴和专家使用,也提供给在线学习者,帮助其精准了解自己的学习过程和状态,开展自我评价和反思,提高学习绩效。

第六步后,在线教学者、专家根据仪表盘提供的可视化反馈信息,及时评估学习者的进步和表现,提升个性化在线学习的品质。

数据沿着“数据—处理与存储—融合—分析—评价—反馈和优化”的流程,价值不断增加,从最基本的记录到预测未来趋势,向过程性及时引导和调整转变,其中数据是资产,分析和挖掘是技术,过程性评价是手段,促进更加有效的学习是目标。

在线大数据学习效果怎么样?

(一)在线学习过程性活动记录子系统

虚拟的在线学习过程可以看作是五类元素的组合,即学习者、学习资源、交互、事件以及学习结果。这五个元素之间相互影响,密切相关,共同构成系统的在线学习活动。根据在线学习活动属性与关键内容,我们将记录子系统中的过程性活动分为互动交流、资源使用、学习作品、资源分享、平台利用、自我评价、学伴评价、教师点评、学习反思和成长记录等核心活动。

Web爬虫具有目标信息采集准确、应用配置简单的特征,是在线数据记录非常有效的方式。另外,该技术在记录数据的同时,还能执行数据过滤的功能,非常适合大数据背景下在线学习环境的特征。记录子系统利用Web爬虫记录学习活动数据,为下一步的数据处理与存储子系统提供数据来源。

(二)数据处理与存储子系统

数据处理与存储子系统主要包括数据采集、清洗、存储和数据转化四大模块。

其中,数据采集模块实现“采”和“集”两个功能,“采”实现记录系统所提供数据的针对性、价值性、精准性抓取;“集”则按照一定规则和筛选标准进行数据汇聚。如果数据的源头存在垃圾,那么产出的很难是金子。数据清洗模块的作用就是过滤掉“垃圾信息”,尽可能保证入库数据的正确性。数据转化模块在数据层级进行数据格式的统一与数据分类变量重组等工作,将数据转化成为适合融合与挖掘的形式。

数据存储的主要任务是按照数据模型定义的表结构,将转化模块提交的数据集存入数据库中,以防止数据丢失。子系统将结构化数据存储于关系型的开源数据库MySQL中,非结构化与半结构化数据将存储于非关系型(NoSQL)的开源分布式数据库HBase中。HBase是面向列的分布式开源数据库,它和大数据分布式处理框架Hadoop紧密关联,主要包括Client(访问入口)、Zookeeper(协调服务)、HRegionServer(表数据读写操作)、HMaster(HRegionServer行为监视)四个核心组件,可提供过程性评价数据的实时随机读/写访问。

(三)数据融合子系统

数据融合子系统通过在数据间、信息间、知识片段间建立多维度、多粒度的语义连通,形成面向多层次知识提取的数据集合,解决数据的碎片化问题。在参考现代教育评价理论和在线学习理论的基础上,本研究将过程性学习数据融合为四类核心内容,分别是:

学习态度相关数据,主要表现在线学习者学习过程的认真程度,用以衡量学习任务完成量方面的数据;

学习方法相关数据,主要是完成学习任务的行为或操作性知识方面的数据;

学习过程相关数据,主要为学习者在学习情境中与教学者、学伴,以及资源环境的交互而产生的数据,包括知识、技能和态度等核心内容;

自评他评数据,主要是来自于学生自评、学伴互评和教师点评方面的数据。

通过小数据的融合,系统打通了过程性学习评价的数据孤岛,为进一步数据分析提供了支持。

(四)在线学习过程性数据分析子系统

在线学习过程数据分析子系统从多个维度挖掘融合后数据中的有价值信息,对学习者的个体学习过程进行画像。其中,数据挖掘综合运用数学统计、关联规则和决策树等方法,分析学习者学习过程与学习内容、学习状态等变量的相关关系,帮助评价系统针对学习者的特征开展精准知识推荐和引导。机器学习主要研究计算机如何模拟人类利用已知事实规律获取新知识的智慧。应用机器学习方法可以模拟人类智慧,分析学习者的学习状态、学习行为及其潜在的影响因素,针对性地刻画个体行为特征和在线学习的风格。

学习分析技术是测量、收集和分析有关学习数据,以理解和优化学习及其产生情境的技术。《2016新媒体联盟中国基础教育技术展望:地平线项目区域报告》认为:“大数据学习分析技术将在未来两至三年成为极具影响力的教育技术”。

学习分析技术能够帮助系统对学习者的学习结果进行评估,理解和优化在线学习及其产生的情境,预测学习者的发展趋势,为过程性评价提供实时反馈信息。

模式识别利用计算机代替人对学习行为信息进行处理和识别,它通过样本获取、特征抽取、类型识别和过程性评判等核心步骤,实现学习过程特征的描述、识别和分类。SNA(SocialNetworkAnalysis,社会网络分析)从社会关系网络结构出发,计算学习者在学习社群中的位置、角色、声望和群体属性等信息,分析学习者在线学习社群网络形成的过程与特征,从而为学习者的积极性和交互程度判断提供依据。

(五)在线学习过程性评价子系统

过程性评价将评价“嵌入”到学习过程中,主张对学习的动机、参与过程和学习效果进行三位一体的评价。如下表所示,本研究将依据一定的评价标准和指标,从学习动机、学习参与过程、学习效果三个维度开展评价。评价不仅关注学习效果,而且关注影响学习者学习投入的动机以及知识积累的过程,将评价活动和过程作为被评价者展示自己进步和成绩的平台,让学习者主动参与到学习与评价活动中去。

学习动机是激发个体学习,并使学习行为趋向一定目标前进的心理动因和倾向,具有方向性、驱动性、行为导向性和持久性的特征。学习者往往对感兴趣、有价值、处于能力范围内并可带来成就感的学习内容投入更多的时间和精力,从中获得较大的满足感。学习动机评价将从知识价值的认识(知识价值观)、对学习的直接兴趣(学习兴趣)、对自身学习能力的认识(学习能力感)、对学习成绩的归因(成就归因)四个方面展开。

学习参与注重建立伙伴关系,是一种主动的个性化学习体验。纽曼将学习过程中的参与看作是行为参与、情感参与和认知参与的有机组合,这种划分思想得到了研究者们的普遍认同。在师生分离、生生分离的在线学习状态下,过程性评价子系统通过对行为(内容互动、学伴互动、师生互动、学习环境互动)、情感(兴趣、成功、焦虑、厌倦等),以及认知(记忆、理解、运用、分析、评价、创造和知识掌握等)三个维度的学习参与评价,分析学习个体多方面潜能的自由发展和个性化表现。

学习效果是在线学习者完成课程学习之后能力提升的程度,增值是学习效果的主要表达方式。阿斯汀的学生参与理论(StudentInvolvementTheory)将学习效果解释为能力获得程度的认定,从动态角度解释了学习质量的提高过程,受到广泛关注。

在参考阿斯汀思想的基础上,系统根据过程性评价理念和在线学习的特征,从高层次思维能力(探究问题的能力、批判思维的能力、创造性思维能力,以及知识的综合应用能力等)、知识应用与实践能力(发现问题、解释问题、分析问题和解决问题的能力)、在线协作能力(交流、沟通与在线协作学习能力)、自我学习与发展能力(自主信息收集与阅读、信息整合与终身学习能力等)和其他综合能力(学科视野、创新能力、信息素养)等五个核心内容出发,展开学习效果过程性评价。

通过评价子系统提供的学习质量反馈信息,在线教学者可更清楚地了解学习者的学习状态和效果,对教学策略展开反思与内省,并针对个体差异展开积极的引导、干预和学习路径调整推荐。在线学伴从协作视角判断过程性成果价值,通过协同与互助等方式共同构建良性的同侪互动。利用来自于评价子系统、教学者和学伴的反馈信息,学习者能更好地认识自己的优势和不足,及时纠正问题。

过程性学习评价强调,课程知识内容的建构是有意义的观点和思想产生并不断改进的过程。大数据背景下,贯穿于在线学习始终的过程性评价在学习者个体知识的不断建构与发展中,实现在线教学、学习和评价的有机融合

人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:


多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台

这篇关于在线大数据学习效果怎么样,在线学习过程性评价系统工作流程分为哪几步?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818687

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom