基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真

本文主要是介绍基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真。太阳黑子是人们最早发现也是人们最熟悉的一种太阳表面活动。因为太阳内部磁场发生变化,太阳黑子的数量并不是固定的,它会随着时间的变化而上下波动,每隔一定时间会达到一个最高点,这段时间就被称之为一个太阳黑子周期。太阳黑子的活动呈现周期性变化是由施瓦贝首次发现的。沃尔夫 (R.Wolfer)继而推算出11年的周期规律。实际上,太阳黑子的活动不仅呈11年的周期变化,还有海耳在研究太阳黑子磁场分布时发现的22年周期;格莱斯堡等人发现的80年周期以及蒙德极小期等。由于太阳黑子的活动规律极其复杂,时至今日科学家们仍在努力研究其内在的规律和特性。事实上,对太阳黑子活动规律的研究不仅具有理论意义,而且具有直接的应用需求。太阳黑子的活动呈现周期性变化的,沃尔夫(R.Wolfer)根据在过去的288 年(1700年~1987 年)间每年太阳黑子出现的数量和大小的观测数据推算出11 年的周期规律。我们利用Matlab强大的数据处理与仿真功能,对Wolfer数进行功率谱密度分析从而可以得到对太阳黑子活动周期的结论。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.................................................................................
ind = 0;
kk=300;
for k=1:length(SSN)+Predict_Len; %开始求K if k <= length(SSN)Y_predict3(k) = c(1,k) + c(2,k)*k + c(3,k)*yc(k) + c(4,k)*ys(k) + c(5,k)*yc2(k) + c(6,k)*ys2(k) + c(7,k)*yc3(k) + c(8,k)*ys3(k); else    %Y_predict3(k) = c(1,end) + c(2,end)*k + c(3,end)*yc(k) + c(4,end)*ys(k) + c(5,end)*yc2(k) + c(6,end)*ys2(k) + c(7,end)*yc3(k) + c(8,end)*ys3(k); c0 = mean(c(1,end-kk-1:end-kk));c1 = mean(c(2,end-kk-1:end-kk));c2 = mean(c(3,end-kk-1:end-kk));c3 = mean(c(4,end-kk-1:end-kk));c4 = mean(c(5,end-kk-1:end-kk));c5 = mean(c(6,end-kk-1:end-kk));c6 = mean(c(7,end-kk-1:end-kk));c7 = mean(c(8,end-kk-1:end-kk));Y_predict3(k) = c0  + c1*k + c2*yc(k) + c3*ys(k) + c4*yc2(k) + c5*ys2(k) + c6*yc3(k) + c7*ys3(k); ind           = ind + 1;Ys(ind)       = Y_predict3(k);end
end
figure;plot(YEAR2,SSN,'r');hold off;
legend('预测SSN','实际SSN');
grid on;%根据预测结果得到下次太阳黑子活动高峰和低峰的时间
%前一次高峰日期为XX           = 59;
[Vmax1,Imax1] = max(Ys);
[Vmax2,Imax2] = max(SSN(length(SSN)-XX:length(SSN)));%3100~3160if Vmax1 > Vmax2II   =  Imax1;MM   =  Vmax1; time = (length(SSN) + II-3019);%原数据的最后一个月份+预测后的最大值 - 前一个高峰日期
elseII   =  Imax2;MM   =  Vmax2; time = (length(SSN) + (XX-II)-3019);%原数据的最后一个月份+预测后的最大值 - 前一个高峰日期
end
Years=time/12;fprintf('下次高峰期日期为:%d',round(2000 + Years));
fprintf('年\n\n');
fprintf('最大值为:%2.2f\n\n\n\n',MM);%计算下一次低谷值
[Vmin,Imin] = min(Ys);
fprintf('下次低峰期日期为:%d',round(2012 + Imin/12));
fprintf('年\n\n');
fprintf('最小值为:%2.2f\n\n',Vmin);
16_013m

4.本算法原理

        在研究太阳黑子活动时,通常会选择一个合适的物理或统计模型来描述其周期性变化规律。例如,可以选择Hale-Stark定律、Schwabe周期或者某种动力学系统模型等。为了确定模型中的未知参数,我们可以利用历史观测数据采用最小二乘法进行参数辨识。

最小二乘法:

        假设我们有一个拟合模型 f(x,θ),其中x 是时间变量,θ=[θ1​,θ2​,...,θn​] 是待估计的模型参数向量。已知一系列太阳黑子活动观测数据yi​ 对应于时间点 xi​ (i=1, 2, ..., m),目标是通过调整参数 θ 来使模型输出与实际观测值之间的误差平方和最小。这个优化问题可以用以下数学公式表示:

参数辨识步骤:

  • 初始化参数:首先为模型参数设定初始值。
  • 构建目标函数:根据上述公式构建误差平方和作为目标函数。
  • 求解最优参数:运用梯度下降法、牛顿法或其他优化算法找到使目标函数极小化的参数值θ^。

模型预测 

一旦通过最小二乘法得到最佳参数估计θ^,就可以使用此参数对未来的太阳黑子活动进行预测:

应用实例 以一个简单的线性模型为例(虽然太阳黑子活动通常具有非线性特征):

        这里的参数向量θ=[θ0​,θ1​],分别代表截距和斜率。采用最小二乘法就是要找出使得下式最小的 θ0​ 和θ1​:

        在实际应用中,针对太阳黑子活动这类复杂的自然现象,可能需要选择更高级别的非线性模型,并结合其他科学理论和观测数据进行分析。同时,对于复杂模型,可能会涉及更多优化方法和技术,如正则化最小二乘法以防止过拟合等问题。

5.完整程序

VVV

这篇关于基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818634

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小