java数据结构与算法刷题-----LeetCode376. 摆动序列

2024-03-17 09:04

本文主要是介绍java数据结构与算法刷题-----LeetCode376. 摆动序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846

文章目录

    • 1. 贪心
    • 2. 动态规划
    • 3. 优化版动态规划

在这里插入图片描述

1. 贪心

解题思路:时间复杂度O( n n n),空间复杂度O( 1 1 1)
  1. 将序列想象成一座山峰,这个山峰由石块构成,我们爬这作山峰,可以前进,所以对我们来说,只有前面的石块和后面的石块。
  2. 对我们来说,我们的路线就会有上坡(前面的石块高度(海拔)>后面的石块),下坡(前面的石块海拔<后面的石块),平坡(每块石头的海拔都一样)
  3. 题目就是让我们统计,只保留上下坡的情况下,上坡和下坡依次摆动,共摆动了几次

题目特殊要求:

  1. 只要有一块石头,就可以算一个坡。例如整座山就一块石头[1],那么就算一个摆动。因为爬上这块石头,算上坡,爬下这块石头,算下坡
  2. 有2块石头,但是构成的是平坡,那么只算一个摆动。例如[1,1],两个石头大小一样。爬上第一块石头算上坡,从第一块到第二块石头,只是直走,没有爬坡。然后从第二块石头下去,算下坡。依然是一个上坡,一个下坡,构成一个摆动。
  3. 有两块石头,但是构成的不是平坡,那么算2个摆动。例如[1,2]. 题目要求的。爬上第一块石块算一个摆动,爬下最后一块石头也算一个摆动。
  4. 上坡+平坡+上坡,或者下坡+平坡+下坡,属于没换坡,例如[1,2,2,3],只有两个摆动。爬上1算一个摆动,然后1-2是上坡,2-2是平坡,2-3还是上坡,没有坡度变化,都不算坡。最后爬下最后一块石头3,算一个坡。最终共两个坡。
代码

在这里插入图片描述

class Solution {public int wiggleMaxLength(int[] nums) {int n = nums.length;if (n < 2) return n;//元素小于2个,就只有n个摆动int prevdiff = nums[1] - nums[0];//记录当前坡上的差值,是上坡还是下坡,这里不记录平坡int ret = prevdiff != 0 ? 2 : 1;//如果是平坡,就只有1个摆动,如果是上坡或者下坡就有2个摆动(题目规定)for (int i = 2; i < n; i++) {//之后还有坡,就继续统计int diff = nums[i] - nums[i - 1];//看看当前是什么坡,上坡,还是下坡,还是平坡//如果是平坡,下次变坡后,必须通过prevdiff来获取,平坡之前是什么坡//如果变坡后,和平坡之前不同,才能称为换坡了,否则还是没有换坡,也就不是摆动if ((diff > 0 && prevdiff <= 0) || (diff < 0 && prevdiff >= 0)) {//如果换坡了(上坡变下坡,或者下坡变上坡)ret++;//换坡了,摆动+1prevdiff = diff;//换坡后,prevdiff变成这个坡的坡度(上坡还是下坡)。以方便寻找下一个不同的坡度}}return ret;//将换坡次数返回}
}

2. 动态规划

解题思路:时间复杂度O( n n n),空间复杂度O( n n n)

用动态规划来实现上面贪心的思想

动态规划5步曲
  1. DP数组及下标含义
  1. 我们要求出的是到当前石头为止,坡度上下变化的次数。显然dp数组中存储的是坡度摆动次数。要求出谁的?显然是求出,从起始石头到当前石头的。那么下标就是代表当前是哪块石头。但是如何知道前一块是上坡还是下坡呢?我们可以创建两个数组,一个是当前石头上坡时候用,一个下坡时候用。很显然,需要一个下标,两个数组。
  1. 递推公式:dp[]和down[]数组分别用于上坡和下坡
  1. 只要有石头,那么摆动就有1,具体请参考上面的"法一:贪心"的解析。所以up[0] = down[0] = 1.
  2. 从第二块石块开始后面的每一块石头,记为第i块石头。
  3. 我们分别获取up[i-1],down[i-1],它们保存到前一块石头的路径摆动次数。则他俩里面大的那个,一定是上块石头的坡度。因为上一块石头,如果是上坡就放入up,下坡就放入down
  4. 如果第i块石块,是上坡,我们获取Math.max(up[i-1],down[i-1]),如果结果是down[i-1]更大,说明上一块是下坡,而第i块是上坡。则摆动+1.
  5. 依次类推,得到公式:
  1. i是上坡,up[i] = Math.max(up[i-1],down[i-1]+1). down[i] = down[i-1]. 其中down[i] = down[i-1]是因为i石块不是下坡,用不着down,但是down[i]下次会用到,所以将[i-1]的值给[i]

Math.max(up,down)获取的是i-1的坡度,down[i-1]+1,是如果i-1是下坡,那么到i位置的路径摆动次数是i-1的摆动次数+1。因为如果i-1是下坡,而现在i是上坡,down[i-1]就是到前一块路径的摆动次数,i是上坡,要增加一次摆动。等价于如下代码:

int num = Math.max(up[i-1],down[i-1]);
boolean flag = true;//上一个石头默认是上坡
if(num  == down[i-1]) flag = false;//上一个石头是下坡
if(flag) up[i] = up[i-1];//上一个也是上坡,那么摆动不变
else up[i] = down[i-1]+1;//上一个是下坡,那么摆动+1
  1. i是下坡,up[i] = up[i-1]; down[i] = Math.max(up[i-1]+1),down[i-1]
  2. i是平坡,up[i] = up[i-1];down[i] = down[i-1];
  1. dp数组初始化

在这里插入图片描述

  1. 数组遍历顺序:一维数组,无需考虑
代码

在这里插入图片描述

class Solution {public int wiggleMaxLength(int[] nums) {//和贪心一样int n = nums.length;if (n < 2) return n;//dp数组表示,当前石块i,如果是上坡的,就放入up中,如果是下坡的,就放入down中,然后计算到这块石头为止的摆动//up表示上坡,down表示下坡。dp数组的下标表示,第几块石头//例如up[1],就是第一块石头如果是上坡,到它为止的路径,它的最大摆动是多少//down[3]就是第3块石头,如果是下坡,到它为止的路径,最大摆动是多少/**则dp数组的值保存的就是 到第i块石块,摆动的数量 */int[] up = new int[n];int[] down = new int[n];up[0] = down[0] = 1;//有石头就有一个摆动,无论上坡,还是下坡,都算一个摆动。for (int i = 1; i < n; i++) {//从第一块石头开始规划坡度if (nums[i] > nums[i - 1]) {//如果当前石块是上坡//当前石块应该放入上坡UP中,获取前一块石头的信息,前一块如果也是上坡,则摆动数量不变,前一块是下坡,那么摆动+1. //对于我们来说,我们不知道前一块是上坡还是下坡,但是上一块石头的路径摆动,一定放入了dp数组//而且一定是最大的,所以up[i-1]和down[i-1],就是获取前一块石头的最大摆动up[i] = Math.max(up[i - 1], down[i - 1] + 1);//必须两个一起获取,因为不知道前一块是上坡还是下坡//当前石块i是上坡,无法放入下坡,所以对于down来说,只能抛弃这块石头,那么摆动不变down[i] = down[i - 1];//让其继承前一块石头的坡度} else if (nums[i] < nums[i - 1]) {//如果当前石块是下坡up[i] = up[i - 1];//和上坡没有关系,抛弃这块石头//获取前一块石头的信息,如果是上坡,那么摆动+1,如果是下坡,摆动不变。down[i] = Math.max(up[i - 1] + 1, down[i - 1]);} else {//如果是平坡up[i] = up[i - 1];//摆动不变down[i] = down[i - 1];//摆动不变}}//到最后一块石头石,我们也不知道最后一块是上坡还是下坡。只知道到它为止的摆动,放入了up[n-1]和down[n-1]//而且肯定是大的那个return Math.max(up[n - 1], down[n - 1]);}
}

3. 优化版动态规划

解题思路:时间复杂度O( n n n),空间复杂度O( 1 1 1)

将法二的dp数组优化掉,换成了两个变量
因为法二中,虽然是dp数组,但是我们每次只使用前一个值罢了

代码

在这里插入图片描述

  1. 基于法二,单纯将数组换成变量
class Solution {public int wiggleMaxLength(int[] nums) {int n = nums.length;if (n < 2) return n;int up = 1, down = 1;//将dp数组,换成两个变量for (int i = 1; i < n; i++) {if (nums[i] > nums[i - 1]) {//如果是上坡up = Math.max(up, down + 1);//看前一个是不是上坡,不是就摆动+1} else if (nums[i] < nums[i - 1]) {//如果是下坡down = Math.max(up + 1, down);//上一个是上坡,就摆动+1}}return Math.max(up, down);}
}
  1. 我们发现,上坡的话,up的值不变,下坡的话,down的值不变.而本次修改up的值后,下次一定是修改down的值。因为我们要找的就是上坡和下坡交替出现,所以根本没必要每次用Math.max()方法
class Solution {public int wiggleMaxLength(int[] nums) {int n = nums.length;if (n < 2) {return n;}int up = 1, down = 1;//将dp数组,换成两个变量for (int i = 1; i < n; i++) {if (nums[i] > nums[i - 1]) {//如果是上坡up = down + 1;//看前一个是不是上坡,不是就摆动+1} else if (nums[i] < nums[i - 1]) {down = up + 1;}}return Math.max(up, down);}
}

这篇关于java数据结构与算法刷题-----LeetCode376. 摆动序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818488

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依