【机器学习】P24 随机森林算法(1) 实现 “鸢尾花” 预测

2024-03-17 06:20

本文主要是介绍【机器学习】P24 随机森林算法(1) 实现 “鸢尾花” 预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随机森林算法 Random Forest Algorithm

  • 随机森林算法
  • 随机森林算法实现分类鸢尾花

随机森林算法

随机森林(Random Forest)算法 是一种 集成学习(Ensemble Learning)方法,它由多个决策树组成,是一种分类、回归和特征选择的机器学习算法。

在随机森林中,每个决策树都是独立地训练的,每棵树的建立都是基于随机选取的 特征子集 和随机选取的 训练样本集

  • 在分类问题中,随机森林采用投票的方式来决定最终分类结果;
  • 在回归问题中,随机森林采用平均值的方式来预测结果。

对于随机森林算法,必须知道的几个概念包括:

  1. 怎样选取的特征子集以及训练样本集;
  2. 我们很清楚决策树如何对分类值做出分类处理,然而决策树如何对连续值做出的分类处理?

对于第一个问题,很好回答和理解,所谓特征子集以及训练样本集,其实就是为了防止森林中所有的决策树的训练集一样,因为如果决策树的所有训练集一样,那就没有意义建造森林了。而抽取的方法有很多,最简单就像从口袋中抽球一样,随机抽出放回;将抽出的球构成训练样本集。

而对于第二个问题,就需要深思熟虑一下,首先需要理解的是:

  • 对于全都是数字的训练集数据特征值,决策树在选取划分特征时通常会采用方差(Variance)或均方差(Mean Squared Error)来衡量特征的重要性,以找到能够最大化减少样本方差划分特征。

  • 对于全都是分类的训练集数据特征,决策树在选取划分特征时通常会采用信息增益(Information Gain)来衡量特征的重要性,所谓最大信息增益,即最大化减少熵的选择。

其次,对于连续型特征,如体重、身高等等,采用二分法进行划分。具体来说,通过在特征值中选择一个分裂点,即可以将整个特征值数组分为两类的点,通常分裂点的选择有两种策略:

  1. 选择中位数:一种常见的选择分裂点的方法是选择特征值的中位数作为分裂点。具体来说,可以按照该特征值从小到大进行排序,然后选择中间位置上的值作为分裂点。
  2. 选择平均值:另一种选择分裂点的方法是选择特征值的平均值作为分裂点。具体来说,可以计算该特征值的平均值,并将其作为分裂点。

然后计算每个属性分裂后的哪个的方差减少值最大,即选择其作为分类选择。

下述内容将围绕随机森林算法实现一个著名的分类问题:鸢尾花预测;而实现回归问题,即波士顿房价通过随机森林算法预测将在【机器学习】P25 随机森林算法(2) 实现 “波士顿房价” 预测 中呈现;


随机森林算法实现分类鸢尾花

鸢尾花数据与特征:
鸢尾花,又称花卉之王,是一种常见的花卉植物,由于其具有多种颜色和品种,因此备受欣赏。在机器学习中,鸢尾花品种主要分为三类,其区分主要通过

  • 萼片长度(sepal length)
  • 萼片宽度(sepal width)
  • 花瓣长度(petal length)
  • 花瓣宽度(petal width)

四大属性来进行区分,如下图所示,我们截取 sklearn 中鸢尾花训练集前十个数据,通过 pandas 进行查看。

import pandas as pdsamples = X_train[:10]
targets = y_train[:10]
df = pd.DataFrame(samples, columns=iris.feature_names[:4])
df["Target"] = targets
df.insert(0, "Index", df.index+1)print(df.to_string(index=False))

在这里插入图片描述

随机森林分类鸢尾花的操作步骤:

  • 首先导入了需要的库和数据集;
  • 然后将数据集拆分为训练集和测试集;
  • 接下来,创建一个包含10个决策树的随机森林分类器 n_estimators=10,并使用训练集拟合模型;
  • 然后使用测试集预测结果,并计算模型的准确率。
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载 iris 数据集
iris = load_iris()
X, y = iris.data, iris.target# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)# 创建随机森林分类器
rf = RandomForestClassifier(n_estimators=10)# 使用训练集拟合模型
rf.fit(X_train, y_train)# 获取每个决策树的预测结果
tree_predictions = []
for tree in rfc.estimators_:tree_predictions.append(tree.predict(X_test))# 预测测试集
y_pred = rf.predict(X_test)# 打印每个决策树的前十个测试案例的预测结果
for i, tree_prediction in enumerate(tree_predictions):print(f"Tree {i} predictions:", tree_prediction[:10])# 打印随机森林的前十个测试案例的预测结果
print("Random forest predictions:", y_pred[:10])# 计算模型精度
accuracy = rf.score(X_test, y_test)
# accuracy = sum(y_pred == y_test) / len(y_test)
print("Accuracy:", accuracy)

通过将随机森林的10个决策树打印各自对前十个测试案例的预测结果,还是发现存在不同的分类结果,但是最终都是按照投票的方式,得到最终的预测结果,并且达到准确率 100%

在这里插入图片描述

最后还可通过输入四个属性来获取预测的结果:

# 输入待预测的四个属性
input_data = [[5.1, 3.5, 1.4, 0.2],[7.0, 3.2, 4.7, 1.4],[6.3, 2.9, 5.6, 1.8],[4.8, 3.4, 1.9, 0.2]]# 预测输入数据的分类
output_data = rf.predict(input_data)# 输出预测结果
print(output_data)

这篇关于【机器学习】P24 随机森林算法(1) 实现 “鸢尾花” 预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818079

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1