【四 (1)数据可视化之如何选用正确的图表】

2024-03-16 19:04

本文主要是介绍【四 (1)数据可视化之如何选用正确的图表】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 文章导航
    • 一、数据分析中可视化的作用
      • 1、揭示数据关联和模式
      • 2、支持数据分析和决策
      • 3、提升沟通和共享效果
      • 4、强调关键信息和发现
      • 5、增强故事叙述和记忆效果
      • 6、有效增强数据交互性数据
      • 7、复杂信息易理解
      • 8、数据多维度显示
    • 二、如何选用合适的图表
      • 1、简洁性避免使用过于复杂或繁琐的图表,以免使读者感到困惑。选择简单明了的图表类型,突出关键信息。
      • 2、可读性确保图表易于阅读和理解。使用清晰的标签、图例和颜色编码,以帮助读者快速理解图表内容。
      • 3、数据准确性确保图表中的数据准确无误,并避免误导读者。
      • 4、目的明确在选择图表之前,明确你的目的和受众。不同的图表类型适用于不同的目的和受众,因此需要根据实际情况进行选择。
      • 5、可视化图表分类
    • 三、python可视化包及其优缺点
    • 四、常见图表样式
      • 1.1、条形图
      • 1.2、堆叠条形图
      • 1.3、百分百堆叠条形图
      • 2、直方图
      • 3、折线图
      • 4、面积图
      • 5、饼图
      • 6、环形图
      • 7、玫瑰图
      • 8、热力图
      • 9、雷达图
      • 10、桑葚图
      • 11、词云图
      • 12、地图
      • 13、仪表盘
      • 14、水球图
      • 15、箱型图
      • 16、K线图

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、数据分析中可视化的作用

1、揭示数据关联和模式

可视化可以直观地展示数据之间的关联和模式,帮助人们发现隐藏在数据背后的故事和趋势。

2、支持数据分析和决策

通过可视化工具,用户可以更好地理解和分析数据,发现其中的模式和趋势,从而做出更准确、有依据的决策。

3、提升沟通和共享效果

可视化可以将复杂的数据信息以直观、易懂的方式展示,使数据传达更加有效。同时,它也可以帮助人们更好地表达和分享数据,促进沟通和理解,避免信息的误解和歧义。

4、强调关键信息和发现

通过可视化,可以将关键信息和发现突出显示,使其更加显眼和易于理解。这有助于人们聚焦在数据中最重要的部分,减少冗余信息,提高数据理解的效率。

5、增强故事叙述和记忆效果

可视化可以帮助人们通过图形和图表的方式讲述一个故事,使数据更具有说服力和记忆效果。

6、有效增强数据交互性数据

可视化鼓励用户探索和操控数据,从而发现其中的奥秘。与静态图表相比,它提供了更高的交互性和动态性。

7、复杂信息易理解

人类大脑处理视觉信息的速度比书面信息快10倍。因此,使用图表总结复杂的数据可以确保比混乱的报告或电子表格更快地理解关系。

8、数据多维度显示

在可视化分析中,数据可以进行分类、排序、组合并显示每个维度的值,以便可以看到表示对象或事件数据的多个属性或变量。

二、如何选用合适的图表

选择合适的图表类型需要考虑数据的特点、目标受众的需求以及传达的信息,需要兼顾以下几点

1、简洁性避免使用过于复杂或繁琐的图表,以免使读者感到困惑。选择简单明了的图表类型,突出关键信息。

2、可读性确保图表易于阅读和理解。使用清晰的标签、图例和颜色编码,以帮助读者快速理解图表内容。

3、数据准确性确保图表中的数据准确无误,并避免误导读者。

4、目的明确在选择图表之前,明确你的目的和受众。不同的图表类型适用于不同的目的和受众,因此需要根据实际情况进行选择。

5、可视化图表分类

类型用途图形
对比类图形主要用于展示不同类别或组之间的数据对比关系柱形图、条形图、子弹图、雷达图、词云图、哑铃图、棒棒糖图等
趋势类图形用于展示数据随时间或其他变量的变化趋势折线图、范围面积图、面积图、散点图、瀑布图等
分布类图形主要用于展示数据的分布情况散点图、地图、热力区域图、漏斗图、直方图、核密度图等
关系类图形用于展示两个或多个变量之间的关系散点图、气泡图、流程图、甘特图、组织结构图、矩阵图等
占比类图形主要用于展示数据的占比或比例关系饼图、环形图、玫瑰图、百分比堆积柱形图、百分比堆积条形图、树百分比瀑布图、堆叠柱状图、旭日图、漏斗图等
地理类图形用于展示地理数据或空间分布的数据常见的地理类图形包括地图、热力图、点密度图等

三、python可视化包及其优缺点

名称介绍优点缺点适用场景
MatplotlibMatplotlib 是 Python 中最常用的 2D 绘图库,提供了各种绘图工具,如线图、柱状图、散点图、饼图等广泛支持:适用于多种操作系统和平台。
高度可定制:可以精细控制图表的每一个细节。
集成性:与其他 Python 库(如 NumPy、Pandas)集成良好。
复杂度高:相对于其他库,API 可能较为繁琐。
静态图表:主要侧重于静态图表,交互性较弱。
适用于需要高度定制和精细控制图表的场景,如科学研究、数据报告等
SeabornSeaborn 是基于 Matplotlib 的一个统计图形库,专注于绘制具有吸引力的统计图形美观:内置了多种预定义的主题和样式,使得图表更美观。
统计导向:专注于统计图形,适合数据分析和探索。
易用性:API 相对简单,易于上手。
交互性弱:和 Matplotlib 一样,Seaborn 主要侧重于静态图表。
定制性差:虽然美观,但在定制方面可能不如 Matplotlib 灵活。
适用于数据分析、数据探索和可视化报告,特别是需要美观和统计导向的图表
PlotlyPlotly 是一个交互式绘图库,支持创建各种动态和交互式的图表交互性:提供了丰富的交互功能,如缩放、平移、悬停提示等。
多平台支持:支持 Web、桌面和 Jupyter Notebook 等多种平台。
图表类型多样:支持多种图表类型,如散点图、热图、3D 图等。
学习曲线:API 可能较为复杂,需要一些时间来适应。
性能:在处理大量数据时,性能可能不如其他库。
适用于需要创建交互式图表的场景,如 Web 应用、数据仪表板等
PyechartsPyecharts 是一个用于生成 Echarts 图表的 Python 库。Echarts 是一个使用 JavaScript 编写的开源可视化库,Pyecharts 提供了 Python 接口美观:Echarts 的图表美观且高度可定制。
交互性:支持丰富的交互功能,如数据缩放、数据过滤等。
集成性:可以轻松地将图表嵌入到 Web 应用中
依赖 JavaScript:图表是在客户端渲染的,需要用户的浏览器支持 JavaScript。
文档和学习资源:相对于其他 Python 可视化库,文档和学习资源可能较少。
适用于需要创建美观且交互性强的 Web 图表的场景,如数据仪表板、Web 应用等

四、常见图表样式

1.1、条形图

在这里插入图片描述

1.2、堆叠条形图

在这里插入图片描述

1.3、百分百堆叠条形图

在这里插入图片描述

2、直方图

在这里插入图片描述

3、折线图

在这里插入图片描述

4、面积图

在这里插入图片描述

5、饼图

在这里插入图片描述

6、环形图

在这里插入图片描述

7、玫瑰图

在这里插入图片描述

8、热力图

在这里插入图片描述

9、雷达图

在这里插入图片描述

10、桑葚图

在这里插入图片描述

11、词云图

在这里插入图片描述

12、地图

在这里插入图片描述

13、仪表盘

在这里插入图片描述

14、水球图

在这里插入图片描述

15、箱型图

在这里插入图片描述

16、K线图

在这里插入图片描述

这篇关于【四 (1)数据可视化之如何选用正确的图表】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816413

相关文章

Java中如何正确的停掉线程

《Java中如何正确的停掉线程》Java通过interrupt()通知线程停止而非强制,确保线程自主处理中断,避免数据损坏,线程池的shutdown()等待任务完成,shutdownNow()强制中断... 目录为什么不强制停止为什么 Java 不提供强制停止线程的能力呢?如何用interrupt停止线程s

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒