图解缓存淘汰算法 LRU、LFU | 最近最少使用、最不经常使用算法 | go语言实现

本文主要是介绍图解缓存淘汰算法 LRU、LFU | 最近最少使用、最不经常使用算法 | go语言实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

无论是什么系统,在研发的过程中不可避免的会使用到缓存,而缓存一般来说我们不会永久存储,但是缓存的内容是有限的,那么我们如何在有限的内存空间中,尽可能的保留有效的缓存信息呢? 那么我们就可以使用 LRU/LFU算法 ,来维持缓存中的信息的时效性。

LRU 详解

原理

LRU (Least Recently Used:最近最少使用)算法在缓存写满的时候,会根据所有数据的访问记录,淘汰掉未来被访问几率最低的数据。也就是说该算法认为,最近被访问过的数据,在将来被访问的几率最大。

流程如下:
在这里插入图片描述
假设我们有这么一块内存,一共有26个数据存储块。

  1. 当我们连续插入A、B、C、…Z的时候,此时内存已经插满
  2. 那么当我们再插入一个6,那么此时会将内存存放时间最久的数据A淘汰掉。
  3. 当我们从外部读取数据C的时候,此时C就会提到头部,这时候C就是最晚淘汰的了。

其实流程来说很简单。我们来拆分一下的话,不难发现这就是在维护一个双向链表

代码实现

定义一个存放的数据块结构

type item struct {key   stringvalue any// the frequency of keyfreq int
}

定义LRU算法的结构体

type LRU struct {dl       *list.List // 维护的双端队列size     int // 当前的容量capacity int // 限定的容量storage map[string]*list.Element // 存储的key
}

获取某个key的value的函数,如果存在这个key,那么我们就把这个值移动到最前面MoveToFront,否则返回一个nil。

func (c *LRU) Get(key string) any {v, ok := c.storage[key]if ok {c.dl.MoveToFront(v)return v.Value.(item).value}return nil
}

当我们需要put进去一些东西的时候。会分以下几个步骤

  1. 是否已经存在,如果已经存在则,直接返回,并且将key移动到最前面。
  2. 如果没有存在,但是已经是到极限容量了,就把最后一个Back(),淘汰掉,然后在塞入。
  3. 塞入的话,是塞入到最前面PushFront
func (c *LRU) Put(key string, value any) {e, ok := c.storage[key]if ok {n := e.Value.(item)n.value = valuee.Value = nc.dl.MoveToFront(e)return}if c.size >= c.capacity {e = c.dl.Back()dk := e.Value.(item).keyc.dl.Remove(e)delete(c.storage, dk)c.size--}n := item{key: key, value: value}c.dl.PushFront(n)ne := c.dl.Front()c.storage[key] = nec.size++
}

以上就是LRU算法的所有内容了,那我们看一下LFU算法。

LFU

原理

LFU全称是最不经常使用算法(Least Frequently Used),LFU算法的基本思想和所有的缓存算法一样,一定时期内被访问次数最少的页,在将来被访问到的几率也是最小的。

相比于LRU(Least Recently Use)算法,LFU更加注重于使用的频率LRU是其实可以看作是频率为1的LFU的。

在这里插入图片描述

和LRU不同的是,LFU是根据频率排序的,当我们插入的时候,一般会把新插入的放到链表的尾部,因为新插入的一定是没有出现过的,所以频率都会是1 , 所以会放在最后。

所以LFU的插入顺序如下:

  1. 如果A没有出现过,那么就会放在双向链表的最后,依次类推,就会是Z、Y。。C、B、A的顺序放到频率为1的链表中。
  2. 当我们新插入 A,B,C 那么A,B,C就会到频率为2的链表中
  3. 如果再次插入A,B那么A,B会在频率为3中。C依旧在2中
  4. 如果此时已经满了 ,新插入一个的话,我们会把最后一个D移除,并插入 6

在这里插入图片描述

代码

定义一个LFU的结构体:

// LFU the Least Frequently Used (LFU) page-replacement algorithm
type LFU struct {len     int // lengthcap     int // capacityminFreq int // The element that operates least frequently in LFU// key: key of element, value: value of elementitemMap map[string]*list.Element// key: frequency of possible occurrences of all elements in the itemMap// value: elements with the same frequencyfreqMap map[int]*list.List // 维护一个频率和list的集合
}

我们使用LFU算法的话,我们插入的元素就需要带上频率了

// initItem to init item for LFU
func initItem(k string, v any, f int) item {return item{key:   k,value: v,freq:  f,}
}

如果我们获取某个元素,那么这个元素如果存在,就会对这个元素的频率进行加1

// Get the key in cache by LFU
func (c *LFU) Get(key string) any {// if existed, will return valueif e, ok := c.itemMap[key]; ok {// the frequency of e +1 and change freqMapc.increaseFreq(e)obj := e.Value.(item)return obj.value}// if not existed, return nilreturn nil
}

增加频率

// increaseFreq increase the frequency if element
func (c *LFU) increaseFreq(e *list.Element) {obj := e.Value.(item)// remove from low frequency firstoldLost := c.freqMap[obj.freq]oldLost.Remove(e)// change the value of minFreqif c.minFreq == obj.freq && oldLost.Len() == 0 {// if it is the last node of the minimum frequency that is removedc.minFreq++}// add to high frequency listc.insertMap(obj)
}

插入key到LFU缓存中

  1. 如果存在就对频率加1
  2. 如果不存在就准备插入
  3. 如果溢出了,就把最少频率的删除
  4. 如果没有溢出,那么就放到最后
// Put the key in LFU cache
func (c *LFU) Put(key string, value any) {if e, ok := c.itemMap[key]; ok {// if key existed, update the valueobj := e.Value.(item)obj.value = valuec.increaseFreq(e)} else {// if key not existedobj := initItem(key, value, 1)// if the length of item gets to the top line// remove the least frequently operated elementif c.len == c.cap {c.eliminate()c.len--}// insert in freqMap and itemMapc.insertMap(obj)// change minFreq to 1 because insert the newest onec.minFreq = 1// length++c.len++}
}

插入一个新的

// insertMap insert item in map
func (c *LFU) insertMap(obj item) {// add in freqMapl, ok := c.freqMap[obj.freq]if !ok {l = list.New()c.freqMap[obj.freq] = l}e := l.PushFront(obj)// update or add the value of itemMap key to ec.itemMap[obj.key] = e
}

找到最少的链表,并且删除

// eliminate clear the least frequently operated element
func (c *LFU) eliminate() {l := c.freqMap[c.minFreq]e := l.Back()obj := e.Value.(item)l.Remove(e)delete(c.itemMap, obj.key)
}

以上就是所有LFU的算法实现了。

这篇关于图解缓存淘汰算法 LRU、LFU | 最近最少使用、最不经常使用算法 | go语言实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816104

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4